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1 Introduction

Let T be a first-order theory. Any formula ¢(z) of 7% (so a definable set of T quotiented
by a definable equivalence relation of T") induces a “functor of points” ev,(, on the category
Mod(T') of models of T with maps the elementary embeddings, by sending M +— ¢(M). In
this way the category Def(7T) of 0-definable sets of T embeds into the category of functors
[Mod(T'), Set], via the “evaluation map” ev: T — [Mod(T), Set].

Here is the motivating problem: how do we recognize, up to isomorphism, the image of ev
inside [Mod(T'), Set]? That is, given an arbitrary functor X : Mod(T) — Set—some way
of attaching a set to every model of T, functorial with respect to elementary embeddings—

how can we tell if X was isomorphic to some functor of points ev,(,) for some formula
o(x) € T°9? We call such functors X definable.

A necessary condition for definability is compatibility with ultraproducts. Los’ theorem tells
us that evaluation functors ev,(,) commute with ultraproducts, that is,

o (]_[ Mi> = [ [ w(01).

i—U i—U

Strong conceptual completeness for first-order logic, as proved by Makkai in [7], provides
a sort of converse to Los’ theorem, and says that the definable functors are precisely the
ones which preserve ultraproducts and certain formal comparison maps between ultraprod-
ucts, called ultramorphisms, which generalize the diagonal embeddings of models into their
ultrapowers. This recovers T up to bi-interpretability. To precisely state Makkai’s result,
we must formalize what it means for an arbitrary functor X : Mod(T) — Set to “preserve
ultraproducts” and “preserve” these ultramorphisms. We will go into more detail in [3]

Any general framework which recovers theories from their categories of models should be
considerably simplified for Ng-categorical theories, whose definable sets are exceptionally
easy to understand (being precisely the finite disjoint unions of orbits of the automorphism
group) and in fact are determined up to bi-interpretability by the automorphism group of
the unique countable model topologized by pointwise convergence.

We will show that when T is Ny-categorical, we can check definability by checking com-
patibility with ultraproducts and just diagonal embeddings into ultrapowers, so that for
No-categorical theories, the statement of strong conceptual completeness can indeed be sim-
plified.

2 Preliminaries

Throughout, we will assume our theories eliminate imaginaries, so that T" = 7°4, and “de-
finable” means “definable without parameters”. When we say “sort” or “variable”, we will
mean an arbitrary finite tuple of sorts and variables.



To a first-order theory T, one can associate two categories: the category of models Mod(T),
and the category of definable sets Def (7).

Definition 2.1. The category of models Mod(T') of T' comprises the following data:

Objects: models M =T

Mod(T) &
Morphisms: elementary embeddings.

Definition 2.2. The category of definable sets Def(7") of T comprises the following
data:

ar | Objects: equivalence classes of formulas mod T-provable equivalence
Def(T) =

Morphisms: equivalence classes of definable functions mod T-provable equivalence.

By the completeness theorem, T-provable equivalence (T = ¢(x) <> 1(x)) is the same thing
as having identical points in every model; by the downward Lowenheim-Skolem theorem, it
suffices to check having identical points in models bounded by the size of the theory.

Remark 2.3. Models of T' are precisely the functors M : Def(T') — Set which preserve
finite limits, finite sups in subobject lattices, and images. In this way, ev,,) is literally an
evaluation map.

Definition 2.4. Let (A;);e; be an [-indexed collection of nonempty sets. Let U be an
ultrafilter on I. The ultraproduct of (A;);c; with respect to the ultrafilter ¢4, which we
write as [ [,_,;, Ai, is defined as the following quotient,

[T14 €14 /g,

i—U

where the equivalence relation FEy, is defined by: (a;)ier ~g, (bi)ies if and only if the set P
of indices j € I such that a; = b; is in the ultrafilter U.

If (a;)ier is a sequence of elements from the A;, we write [a;];_ for its equivalence class in

Remark 2.5. The above definition fails to produce a non-empty ultraproduct when even a
single A; is empty, although the construction should be unperturbed by anything happening
on an ultrafilter-small set of models. We can address this by more generally defining an
ultraproduct of sets as the colimit of the following filtered diagram D4,

D ar ) Objects: [[,.p A; such that P el
A Morphisms: for P’ < P both in U, [ [;cp Ai = [ Licpr Ai

One verifies that when the A; are nonempty, lim Dy, ,, agrees with the definition [2.4] above,

and that when a U-small set of the A; are empty, limDy,, ,, agrees with [], ,, A; if, when

—-U

computing the latter, one replaces the empty sets with arbitrary nonempty sets.



Although this definition via a filtered colimit of a diagram of infinite products works in the
category Set, it cannot generally work in Mod(T"), because one cannot necessarily form a
product of two models of a first-order theory (e.g. fields). However, ultraproducts of models
still make sense, and codify compactness arguments (as well as the compactness theorem
itself.)

Let me elucidate the previous sentence by spelling out the proofs, using ultraproducts, of
some compactness-related statements.

Here’s the compactness theorem:

Proposition 2.6. A theory T has a model if and only if every finite fragment T" < T has a
model.

Proof. For the non-trivial “if” direction, let D the directed partial order of finite fragments
T' < T. Let U be an ultrafilter completing the filter base consisting of those sets Py a {T" €
D|T" 2 T'}. Let My = T’, and consider the ultraproduct [[;._,, M7 . For any sentence
o € T, the collection of indices 7" € D such that My |= o contains at least Py, so is in U,
0 | [y Mo |= o3 hence, [ [, M =T O

Here are some statements proved by a compactness argument:

Proposition 2.7. Suppose that in every model M = T, the I-indexed definable functions
X; I x jointly cover the definable set X. Then finitely many f; cover X.

Proof. Let D be the directed partial order of finite subsets of I. Suppose that for every
F € D, there is a model My where the images {im(f;) |i € F'} do not cover X (M), witnessed
by an xp € X (M)\ \/,cpim(f;). Let U be an ultrafilter on D as in the proof of 2.6] Consider
the element [2p]|p_y of the ultraproduct [[, ,, Mp. Fix an F' € D. The set of indices
{F|zp ¢ \/,cpim(f;)} contains the U-large set Pp. Since F was arbitrary, [zp]p_y is not
in any im(f;), giving the contrapositive. O

Proposition 2.8. If a sentence o is true for all fields of characteristic zero, there is some
N such that o is true for all fields of characteristic p > N.

Proof. Here are two proofs: the first one is just to take an ultraproduct of counterexamples.

The second proves it directly. Let D enumerate all the complete theories of fields of positive
characteristic. Form a filter base {F,}, prime Where P, comprises those theories of fields
whose characteristics are greater than p. This is closed under finite intersection (and in fact
P,nP; = Puax(pg))- Let U be any completion of this filter base. For each T' € D, let My =T
In the ultraproduct [ [,_,, Mr, for every positive p, it is true that the characteristic is not
p on a U-large set, so this has characteristic zero, and by assumption, o is true on a U-large
set.

Since U was arbitrary, and the intersection of the non-principal ultrafilters completing the
filter base { Py}, prime 1S the filter base {P,}, prime, 0 is true on some Py. O



Since ultraproducts codify compactness and the compactness theorem is a key feature of first-
order logic, it is not unreasonable to expect that invariance with respect to ultraproduct-
induced structure characterizes first-order definability in the models of a theory. This is
strong conceptual completeness, which we will discuss in the next section.

A special case of strong conceptual completeness is the following definability criterion, which
follows from the Beth theorem, though it is not necessary to invoke it.

Theorem 2.9. Let X be a functor Mod(T) — Set which assigns to each model M a
subset of some sort of M, such that for every I, U, and (M;)icr the equality X (I ],_,) =
11,y X (M;) holds. Then X is definable.

Proof. Expand the language £ of T to the language £’ by adding a new constant symbol
¢, meant to be interpreted arbitrarily inside X (M) for every M = T. Consider the class of
L'-structures (M, c) where M =T and ¢ € X(M). By the Chang-Keisler [3] ultraproduct
criterion for a class to be elementary and the assumptions on X, this is an elementary class
of L’-structures. Let T" axiomatize this class. Since we have only added a constant symbol
to the language, the difference between T and 7" consists of £'-sentences {y;(c)}icr, so that
X (M) = ey pi(M). If I was infinite, then there is a model M, a sequence (¢;)ier in M
such that for a non-principal ultrafilter U on I, [¢;];—y is in ﬂie 1 Pi (M ”) but each ¢; is not
in ¢;(M), hence not in X (M). Then the inclusion

(ﬂ soz-<M>>u < (s (M)

el el

is proper and not an equality, a contradiction. O

Strong conceptual completeness, which we will review in the next section [3.19, generalizes
the theorem by removing the assumptions of “subset” (and therefore also that of being
able to talk about “equality”).

3 Strong conceptual completeness

3.1 Pre-ultrafunctors

When X : Mod(T) — Set is ev,(,) and one proves the Los theorem

X <H MZ-> =[x (M),

one has the luxury of being able to test the displayed equation above between two subsets
of (the interpretation in [ [, ,, M; of) the ambient sort of the formula p(x). If X is merely
isomorphic to evy (g, then X ([],_;, M;) and [[,_,, X (M;) might be entirely different sets,
with only the isomorphism to ev,,) to compare them, so that testing equality as above is
not a well-formulated question; rather, one asks for an isomorphism.
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Remark 3.1. Given a natural isomorphism 7 : X =~ ev,,) with components {1y : X (M) ~
©(M)} memoa(r), We have for every ultraproduct [ [, ,, M; a commutative square

@ (n1,)
X (Hz—>u Ml) _____ le Hz—»l/{ X<M)
My le ll_[i_,u nM;
¥ (Hi—»b{ M;) == Hi—»u ©(M;).

where the dashed map @y, is the composition of isomorphisms (] [,_,, M) o M,y M-

It is easy to see that the statement of Los’ theorem is functorial on elementary embeddings.
That is, for every I, every ultrafilter & on I, and every sequence of elementary embeddings
fi + M; — Nj;, the diagram

Lidimul (1,0, Mi)l l[fin(Mi)]i—»u

commutes.

Definition 3.2. For an arbitrary functor X : Mod(T) — Set, if we additionally spec-
ify for every I,U,(M;),er the data of a transition isomorphism Py © X ([, M) —
[ 1,y X (MM;), then we say that (X, ®) “commutes with ultraproducts” if all diagrams

®(nry)
X (Hial/{ MZ) E— Hiau X(Mz)
X([fi]mu)l l[X(fi)]Hu
X (ITimw Vi) o [y X (Vi)
commute. We let ® abbreviate all the transition isomorphisms, and we call a pair (X, ®) a

pre-ultrafunctor. We will abuse terminology by referring to ® as “the” transition isomor-
phism of the pre-ultrafunctor (X, ®).

Given two pre-ultrafunctors (X, ®) and (X', ®’), we define a map between them, called
an ultratransformation, to be a natural transformation n : X — X’ which satisfies the
following additional property: all diagrams

@ (n1,)
Mi—u Mzi lﬂi_,u M,
X' (T o M) I [ Tim X' (M;)

must commute.



With this terminology, the theorem [2.9)says that if X is a sub-pre-ultrafunctor of an evalu-
ation functor ev,,), then X is definable.

In light of the above definition, we can reformulate our observation about a definable functor
x < evy(z) above as saying that the natural isomorphism 7 canonically equips X with a
transition 1som0rphlsm such that 7 is an ultratransformation.

Remark 3.3. Every functor of points ev,(,) can be canonically viewed as a pre-ultrafunctor
with the transition isomorphisms ® just the identity maps (corresponding to the equality
signs in the above diagrams).

One checks that if X and Y are definable sets, and f : X — Y is a definable function, then
the induced natural transformation between evaluation functors evy : evx — evy is in fact
an ultratransformation. (This contains Los’ theorem: in the proof, one is really showing that
if S is the sort containing a formula (), then the canonical definable injection i : p(z) — S
induces an ultratransformation; the fact that the transition isomorphisms are all identities
means that one ends up with the usual equality.)

Definition 3.4. The category of pre-ultrafunctors PUIlt(Mod(T'), Set) comprises the
following data:

Objects: pre-ultrafunctors (X, ®) : Mod(7T) — Set

PUIt(Mod(T), Set) &

Morphisms: ultratransformations 7 : (X, ®) — (X, 9').
Remark 3.5. By the remark the evaluation functor ev : Def(T) — [Mod(T), Set]
further factors through PUIt(Mod(T'), Set):

Def(T) —=— PUIlt(Mod(T), Set)

\ l :

[Mod(T), Set]

where the arrow PUIt(Mod(T'), Set) is just the forgetful functor (X, ®) — X.

Note that whenever there is an isomorphism 7 : X ~ Y as functors Mod(T) — Set,
and (X, ®) is a pre-ultrafunctor, then by conjugating ® by the isomorphism X ~ Y (as
in the diagram , one canonically equips Y with a transition isomorphism @’ such that
n: (X, ®) - (Y,9') is an ultratransformation.

Remark 3.6. That is, X is definable if and only if there is a transition isomorphism &
such that (X, ®) is isomorphic to (ev,(y),id) for some formula ¢(z) € T. We will suppress
the canonical transition isomorphism id and just say that (X, ®) is isomorphic to evy),
understanding that this isomorphism is happening in PUIt(Mod(T'), Set).

The pre-ultrafunctor condition [3.2]only stipulates compatibility with respect to ultraproducts
of elementary embeddings. However, there are other elementary embeddings which arise
purely formally between different ultraproducts with respect to different indexing sets and
ultrafilters, and should be viewed as part of the formal structure on Mlod(T") which is induced



by being able to take ultraproducts. The canonical example is the diagonal embedding of
a model into its ultrapower (which compares an ultrapower M with respect to the trivial
indexing set and trivial ultrafilter to an ultrapower M" with respect to a nontrivial indexing
set and a nontrivial ultrafilter).

Definition 3.7. Fix I, U, and a model M = T.

The diagonal embedding A,; : M — MY is given by sending each a € M to the equivalence
class of the constant sequence [al;_y.

We can stipulate that a pre-ultrafunctor furthermore preserves the diagonal embeddings.

Definition 3.8. We say that a pre-ultrafunctor [3.2] (X, ®) is a A-functor if for every I, for

every U, and for every M and the diagonal embedding M A g pu , the diagram

X (M)

X(W

X(M) a1y

AX$

commutes.

Remark 3.9. It is not true in general that the embedding €v : Def(T") — PUIt(Mod(T), Set)
is an equivalence of categories. If (X, ®) is isomorphic to ev,(,), then (X, ®) preserves the
diagonal embeddings of models into their ultrapowers (in the sense of the definition .
However, later, we will exhibit an example [6.2] of a pre-ultrafunctor which does not preserve
diagonal embeddings.

It is not true either that in general being a A-functor characterizes the image of év; we later
construct a counterexample [6.1]

Strong conceptual completeness says that if we sufficiently generalize the diagonal em-
beddings to a large-enough class of formal comparison maps between ultraproducts (with
respect to possibly different indexing sets and ultrafilters), then we can characterize the
image of év as precisely those pre-ultrafunctors which additionally preserve all these formal
comparison maps. The notion we want is that of an ultramorphism.

3.2 Ultramorphisms

Definition 3.10. ([7], Section 3) An ultragraph I' comprises:

(i) Two disjoint sets I'/ and I'’, called the sets of free nodes and bound nodes, respec-
tively.

(ii) For any pair ,~" € T, there exists a set F(v,7') of edges. This gives the data of a
directed graph.



(iii) For any bound node 8 € I'’, we assign a triple {I,U, g) & (1p,Us, g3) where U is an
ultrafilter on I and ¢ is a function g : I — I'/.

Definition 3.11. ([7], Section 3) An ultradiagram of type I' in a pre-ultracategory S is
a diagram A : ' — S assigning an object A to each node v € X, and assigning a morphism
in S to each edge e € E(v,'), such that

AB) = | [ Algs(i)) /Uy

iEIB

for all bound nodes 3 € I'’.

Given this notion of a diagram with extra structure, there is an obvious notion of natural
transformations between such diagrams which preserve the extra given structure.

Definition 3.12. ([7], Section 3) Let A, B : I' - S. A morphism of ultradiagrams ® :
A — B is a natural transformation ® satisfying

Oy =[] ot

i—Ug

for all bound nodes 3 € I'®.
Now we define ultramorphisms.

Definition 3.13. ([7], Section 3) Let Hom(I', S) be the category of all ultradiagrams of type
I' inside S with morphisms the ultradiagram morphisms defined above. Any two nodes
k,0 e ' define evaluation functors (k),(¢) : Hom(I',S) = S, by

(k) (A B) = A(k) ™ B(k)

(resp. {).
An ultramorphism of type (T',k, {) in S is a natural transformation ¢ : (k) — (¢)[]

Let us unravel the definition for the prototypical example A : M < MY of an ultra-
morphism.

Example 3.14. Given an ultrafilter ¢ on I, put:
. IV~ {k},
. 1 {0},
o F(v,y) = forall v,7 €T,
o (Iy,Uy, goy = {I,U, g) where g is the constant map to k from I.

!Note that in our terminology, an ultramorphism, singular, refers to a collection of possibly many maps
(the components of the natural transformation (k) — (¢)).



By the ultradiagram condition 3.11] an ultradiagram A of type I" in S is determined by A(k),
with A(¢) = A(k)Y.
By the ultradiagram morphism condition [3.12) an ultramorphism of type (I, k, ¢) must be a

collection of maps ((5 MM — M “) McMod(T) which make all squares of the form

commute. It is easy to check that setting d,; = A, the diagonal embedding gives an
ultramorphism.

Definition 3.15. The next least complicated example of an ultramorphism are the gener-
alized diagonal embeddings. Here is how they arise: let g : I — J be a function between
two indexing sets I and J. ¢ induces a pushforward map g, : fI — [5J between the spaces

of ultrafilters on I and J, by g.U d {(P< J|g7'(P)eU. FixU € BI and put V A g:U. Let
(M;)jes be a J-indexed family of models.

Then there is a canonical “fiberwise diagonal embedding”
Ay [T M =[] My
ji—V i—U
given on [a;];—y by replacing each entry a; with ¢g~'({a;})-many copies of itself.

In terms of the definition of an ultramorphism, the free nodes are J, and there are two
bound nodes k£ and ¢. To k we assign the triple (J,V,id;) and to ¢ we assign the triple
(I,U,g). Then A, induces an ultramorphism (k) — (¢).

Now we state what it means for ultramorphisms to be preserved. One should keep in mind
the special case of the diagonal ultramorphism.

Definition 3.16. Let (X,®) : Mod(7) — Set be a pre-ultrafunctor, and let § be an
ultramorphism in Mod(T') and ¢’ an ultramorphism in Set, both of ultramorphism type
Tk, 0

Recall that in the terminology of the definition , J is a natural transformation (k) 2 (0)
of the evaluation functors

(k), (£) : Hom(T', Mod(T)) — Mod(T).

(Resp. ¢', Set.)

Note that for any ultradiagram .# € Hom(I',Mod(T)), X o .# is an ultradiagram in
Hom(T', Set). We say that X carries § into ¢ (prototypically, § and ¢ will both be
canonically defined in the same way in both Mod(7") and Set and in this case we say that
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 has been preserved) if for every ultradiagram .# € Hom(I', Mod (7)), the diagram

X (k) X X a0)
q>//l(k)l l‘i)//[(e)
(XA (k) —— (XA)(0)

commutes. (We are abusing notation and understand that in the above if k is not a bound
node, then the ultraproduct on the bottom left becomes trivial and ® 4 is actually the
identity map idx () (resp. £, ultraproduct on the bottom right).)

Note that what is really happening is that we are applying the covariant Hom-functor
Hom(X, —) to push forward each ultradiagram .# to an ultradiagram X o .#, and then
asking that the pushed-forward ultramorphism X (6) is isomorphic to ¢’ , via X’s transi-
tion isomorphism ®.

3.3 Stating strong conceptual completeness

Just as A-functors are pre-ultrafunctors which additionally preserve the diagonal em-
bedding ultramorphisms, we define ultrafunctors to be pre-ultrafunctors which preserve all
ultramorphisms.

Definition 3.17. ([7], Section 3) An ultrafunctor X : Mod(7") — Set is a pre-ultrafunctor
which respects the fibering over Set: for every 6 € A(Set), X carries dnmod(r) into dget (in
the sense of the definition above) for all § € A(Set).

Definition 3.18. A map between ultrafunctors is just an ultratransformation of the
underlying pre-ultrafunctors. Write Ult(Mod(T'), Set) for the category of ultrafunctors
Mod(T) — Set.

There is a canonical evaluation functor
év : Def(T) — Ult(Mod(T), Set)

sending each definable set A € T to its corresponding ultrafunctor év4, and we now have the
following picture of factorizations of the original evaluation map ev : Def(T) — [Mod(T) —
Set]:
Def(T) —¥— Ult(Mod(T), Set)
PUlt (Mod(T), Set)
[Mod(T), Set]

Now, we can state strong conceptual completeness.

11



Theorem 3.19. ([7], Section 4) év : Def(T) — Ult(Mod(T), Set) is an equivalence of
categories.

4 Strong conceptual completeness for Nj-categorical the-
ories

Of course, the point of all this is that when the theory is nice enough, we can ignore the more
general ultramorphisms and still obtain a statement of strong conceptual completeness. In
this section, we show that when the theory T is additionally assumed to be Ny-categorical,
we can replace “ultrafunctor” with A-functor in the statement of strong conceptual
completeness, so that only the simplest ultramorphisms|[3.13|suffice to state strong conceptual
completeness for Ny-categorical theories.

4.1 Preliminaries on Nj-categorical theories

Definition 4.1. A theory T is Ny-categorical if T" is countable and has, up to isomorphism,
a single countable model.

The definable sets of Ny-categorical theories are exceptionally easy to understand: they are
precisely the finite disjoint unions of orbits of the automorphism group; furthermore, No-
categorical theories are determined up to bi-interpretability by the automorphism group of
the unique countable model topologized by pointwise convergence.

Theorem 4.2. (Ryll-Nardzewski) T is Wo-categorical if and only if it has only finitely many
types in each sort (this implies that all the types are isolated.)

Corollary 4.3. If M =T is the unique countable model of the Rg-categorical theory T, then
M has only finitely many Aut(M)-orbits in each sort (each corresponding to the points of
an isolated type.)

Theorem 4.4. (Coquand-Ahlbrandt-Ziegler) Let T and T' be Xq-categorical with countable
models M and M'. Then T and T" are bi-interpretable if and only if there is an isomorphism
of topological groups Aut(M) ~ Aut(M’), where Aut(M) and Aut(M’) are topologized by
pointwise convergence.

It follows that in the unique countable model M |= T of an Rg-categorical theory, a subset of
a sort in M is definable if and only if it is invariant under the action of Aut(Af). In fact, any
Aut(M)-invariant quotient of a definable subset of M is definable in 74, since the kernel
relation of the quotient will be a definable set.
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4.2 Diagonal embeddings and the finite support property
As a warm-up to the theorem [4.8] we will show in general that if X : Mod(T') — Set is a
A-functor, X must map Aut(M) continuously to Sym(X (M)).

Proposition 4.5. Let T be any theory, and let (X, ®) : Mod(T) — Set be a A-functor.
Then for any model M =T, the restriction of X to a map Aut(M) — Sym(X(M)) is a con-
tinuous group homomorphism (where both groups are topologized by pointwise convergence).

Proof. Since X is a functor, its restriction to Aut(M) is a group homomorphism. To check
continuity, let D be a directed partial order indexing a net of automorphisms [0, ]aep. It
suffices to check that if [04]aep — 0 in Aut(M), then [Xo,]aep — Xo in Sym(X (M)).

We will suppose not and take an ultraproduct of counterexamples. So suppose that [ X o, ]aep
does not converge to Xo. The basic open neighborhoods B.., 4 of Xo are parametrized by
tuples ¢, d of the same sort, and they look like this:

Beea £ {p: X(M) — X(M) | plc) = dJ.

Since [ X0, ]aep does not converge to Xo, then there exists some neighborhood B.., 4 such
that for every « € D, there exists an o/ > « € D such that Xo, ¢ B.., 4.

Now, let I be the underlying set of D, and consider the collection of subsets {P, < I}aep,
where each P, is the set of all g € D such that 5 > a. Since D was a directed partial order,
{P,}aep has the finite intersection property, and can therefore be completed to an ultrafilter

Uu.

Then consider the ultraproduct of automorphisms

[Xoo] X(MM — X(M)H.

a—U :

Let Ay(ar) be the diagonal embedding of X (M) into X (M)¥. Since every X o, sends ¢ to
d #d, [Xow], y sends Axan(c) to Axan(d') # Axan(d). Therefore,

[Xo—a/]a—»u © AX(M) 7 I:XO—:IOL—J/{ © AX(M)

By the definition of a A-functor, we can replace Ax ) with @) 0 X (Ayr). By the
definition [3.2] of a pre-ultrafunctor, we can replace [Xow],_,, and [Xo],_,, with

(I)(M) oX ([Ua’]ozﬂlx{) o (I)(A}[) and (I)(M) oX ([U]aﬁu) © (I)(Az)

Substituting into the displayed inequality above and letting inverse transition isomorphisms
cancel out, we obtain

(I)(M) (@) X ([O‘al]a_,u) O X (AM) 7& CI)(M) O X ([U]a—ﬂ/l) (@) X (AM)
and since ®(y) is a bijection, we may omit it:
X ([oar]asu) 0 X (Au) # X ([0]asu) 0 X (Aur)-
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Since X is a functor, we conclude that
X ([oa]asu © Anr) # X ([0]a—u © Apr)

and since X is certainly a function from Mod(T)(M, M) — Set (X (M), X (M¥)), this
means that
[O-a’]aal/{ oAy # [U]aﬁu oAy

But this inequality says that there is some a € M such that for every a, there is an o’ such
that {0 (a)}, disagrees with {o(a)}, on some U-large set of indices P. Letting ¢ = a and
d = o(c), we have that a U-large subset of {o./(a)}, lies outside of the basic open B, 4 3 0.
Since U contains all the principal filters in D, we have that for every a € D, the intersection
P n P, is nonempty. So, for the basic open B.._, 4 3 o, we have that for every a we can find
some o' € P n P, such that o, ¢ B.., 4. Therefore, [0,]aep does not converge to o, which
is the contrapositive. O

Definition 4.6. Fix X a functor Mod(T) — Set which restricts to continuous maps on
automorphism groups. Fix M k= T. From the continuity we can associate to every tuple
x € X(M) a tuple a, € M as follows: the preimage X* Stab(x) of the basic open subgroup
Stab(x) € Sym(X (M)) must be open, and must therefore be covered by the cosets of a basic
open subgroup of Aut(M ), which is of the form Stab(a,) for some tuple a,.

We call the tuple a, the support of x. It satisfies the following property: whenever oy, 05 €
Aut(M) agree on a,, then Xoy, X0y agree on x. By sending a, — x and letting Aut(M)
act, this induces an Aut(M )-equivariant surjection from the orbit of a, to the orbit of x.

Lemma 4.7. Let T' be any theory, and let X : Mod(T) — Set be a A-functor. Then X
preserves filtered colimits of models: for any model N, if N can be written as the filtered
colimit N ~ lim M;, then X(N) ~ lim X (M;).

Proof. First, we’ll show that being a A-functor implies that elementary embeddings are sent

to injective functions:

Claim: Let f : M — N be an elementary embedding. Then X(f) : X(M) — X(N) is
injective.

Proof of claim. By Scott’s lemma (see e.g. [1] for a proof), there is an ultrapower MY of
M and an elementary map g : N — MY such that the diagram

NN

M — N
commutes. Since X was assumed to be a A-functor, the diagram

P

(M)u (ML{

XA
\T

14



commutes. Since Ay(y) @ X (M) — X (M) is injective and Py is a transition
isomorphism, X (Aj,) is injective, and therefore the composite X (¢) o X (f) is injective.
Therefore, X (f) was injective. O

Claim: For any N = T, the collection of maps {X(f)|f: M — N, M countable} jointly
surject onto X (V).

Proof of claim. Since N is covered by copies of countable models, we do know that { f ‘ f:
M — N, M countable} jointly covers N.

Let I index the elementary embeddings from (representatives of isomorphism classes
of) all countable models to N. Let U be a non-principal ultrafilter on I which contains

the sets Py & {i € I'|im(f;) > 7}, which has the finite intersection property by the
downward Lowenheim-Skolem theorem.

H M, [fi]_i:»lx( N

i—U

Consider the map

The diagonal copy of N in N is in the image of this map: if [n];, € NY, then
{i € I'|3m; s.t. fi(m;) = n}is in U, so [filimulmiliou = [n]imy. Pulling back Ay(N)
along [ f;]i—u, we obtain a map n from N into [ [, ,, M; such that the diagram

NU

commutes.

Now apply X, obtaining the commutative diagram (it is easy to check that the extra
subdiagrams involving X () commute by @y and ®(,,) being isomorphisms):

X (N

X(n
fz i—U T T[X(fl)]l_)u

®(nry)

In particular,
Axvy = [X(fi)limu © Py © X(n).
This implies that Ax(yy is contained inside the image of [ X (f;)]i—u-

Now, suppose that the X(f;) did not cover X (V). That is, suppose that there exists
an € X(N) such that = lies outside of the image of X(f;) for every ¢ € I. Then for
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any [m;li—u € [ [,y Mi, fi(m;) # x for all i € I. Therefore, Axn(x) is not contained
in the image of [ X (f;)]i—u, a contradiction.

We conclude that {X(f)|f: M — N} jointly surjects onto X (). O
Claim: Present N as a filtered colimit of its countable submodels M;. Then X (N) ~

Proof of claim. Our two previous claims show that we may view X (N) as the union
of the X (M;)’s. lim X (M;) can be canonically written as

( I_lie] X(MZ)) /E

where (z € X(M;)) ~g (y € X (1)) if and only if  and y become the same element
in some X (M},) for M}, amalgamating M; and M;. It is easy to check that sending an
x € X(N) to the E-class of an arbitrary lift 2’ € X (M;) (for a choice of some X (M;)
containing ) gives a bijection

X(N) ~ lim X (M;) by = — [2']E,

compatible over the X (M;)’s. O

So far, we have shown that X preserves filtered colimits of countable models. But every
model is a filtered colimit of countable models. Explicitly, if we have N = lim N; where the

. —i

N; are possible uncountable, we have that each N; = lim Nj, so that we have written N as
. 7

a filtered colimit of countable models N;:

N = lim lim N;-L = lim N]’:
> J (4,9)
Then

X(N)~lim X(Nj)=~lim lim X(N;)~lim X(N;).

— (i.g) —i i
]

Theorem 4.8. Let T be Ng-categorical. A functor X : Mod(T') — Set is definable if and
only if there is a transition isomorphism ® such that (X, ®) is a A-functor.

Proof. If X is definable, then its isomorphism to an evaluation functor ¢ pulls back ¢’s
transition isomorphism @’ to a transition isomorphism ® for X, and since (¢, ®’) was an
ultrafunctor (X, ®) is also (these are diagrammatic conditions on " and so are invariant
under conjugation by isomorphisms).

On the other hand, suppose that (X, ®) is a A-functor. Aut(M) acts via X on X (M), and
so X (M) splits up into Aut(M )-orbits. For each representative = of these orbits, we know
from the remarks following that there is a tuple a, € M which supports x, and the map
a, — x induces an Aut(M )-equivariant map from the orbit (type) of a, to the orbit of z.
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Therefore, each Aut(M)-orbit of X (M) is a quotient of an Aut(M )-orbit of M by some
Aut(M )-invariant equivalence relation. Since M is w-categorical, these equivalence relations
are definable and all types are isolated by formulas, so we can write:

X(M) =~ \/ M(pi(x:)) = || M(i(x,)).

el el

By the previous lemma [4.7] and the fact that colimits always commute with colimits and
definable functors always commute with filtered colimits of models, we conclude (writing
N =lim M;):

—j

X(N) ~ lim (U (M) M
=~ 4 (h_H}SOz(MJ) (2)
= ' (SOz(h_H}MJ) (3)
> @i(N). (4)

Now we will show that the I indexing the ¢; must be finite.

In the pre-ultrafunctor condition

Dy, (a1

X (Il Mi) — Ty (X(M;))
x(Th )| |Mexcs
X (I N:) P [ L (X(NV:)),

U,(Ny;)
restricting our attention to just ultraproducts of automorphisms tells us that ® ) : X ([ [,_,,) M; —

[ 1oy X(M;) is a [],_,,, Aut(M;)-equivariant bijection, and therefore induces a bijection on
the orbits of the action on either side.

Let U be some ultrafilter such that |I“| > |I|. Then, at the countable model M, we have

the bijection:
@)

X () " (x ()
Now, the left hand side is | |,.; ¢; (MY). Each ¢; (MY) is actually an Aut(M)“-orbit, since

©0i(M) was an Aut(M)-orbit. Therefore, the number of Aut(M)“-orbits on the left hand
side is |I|.
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On the right hand side, we have (| |, wi(M))". Two points [2;]; s and [1;]i i are Aut(M)H-
conjugate if and only if there exists a P € U such that for all j € P, p,; = ¢,, (where p,,
means which ¢, 2; came from.) But, this is the same as saying [¢.,]j-u = [¢y,;]j-u. So the
number of orbits on the right hand side is |/|¥.

Therefore, |IY| = |I], so I must be finite. Hence there is a formula o(x) such that X (N) ~
@(N) for all N = T. Since for each N, this isomorphism X (N) ~ ¢(N) is induced via
filtered colimits by X (M) ~ ¢(M), this is a natural isomorphism, so X is definable. O

5 An ultraproduct coherence criterion for objects in
the classifying topos

In this section, we will prove, for objects B in the classifying topos &(T) of T—which is
a natural enlargement of Def(T") whose “models” are the same as T’s, and whose objects
pick out a subcategory of evaluation functors Mod(7) — Set containing the image of ev :
Def(T') — Set—that evp being a pre-ultrafunctor characterizes whether or not B € Def(T').

We will see that this generalizes the theorem [4.8]

5.1 Preliminaries on the classifying topos

For the construction and standard facts about the classifying topos of a first-order (or gen-
erally, a coherent) theory, see e.g. Part D of [5] or Volume III of [2]. For our convenience we
will repeat the essentials we will need in the rest of this section.

Definition 5.1. The classifying topos of a first-order theory 7" is a topos &(T") equipped
with a fully faithful functor y : Def(7") — &(7') which is also a model in the sense of
(the definition given there only involves the preservation of certain categorical properties,
so makes sense for functors into any topos instead of Set). &(T') additionally satisfies the
following universal property: for any other topos . and any model M : Def(T) — .7 of

Def(T) in .7, there exists a unique M : &(T) — . such that the diagram

commutes.

This characterizes &(T") up to equivalence. We call M the inverse image functor asso-
ciated to the model M. We also call objects of &(T") which are, up to isomorphism, in the
image of y representable (echoing the standard construction of &(T") as a certain category
of sheaves on Def(T).)
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As the definition indicates, the extension M of M from Def (T') to &(T') should be determined
by what M does on the objects of Def (7). The following discussion is meant to make this

intuition explicit, and to give a formula for computing what M is outside of the image of y
inside & (7).

5.1.1 Computing the associated inverse image functor M

Definition 5.2. (3.7.1 of [2]) Let ' : A — B and G : A — C be functors. The left Kan
extension of G along F', if it exists, is a pair (K,«) where K : B — (' is a functor and
a: G — KoF is anatural transformation satisfying the following universal property if (H, 3)
is another pair with H : B — (' a functor and 3 : G — H o F' a natural transformation, then
there exists a unique natural transformation v : K — H satisfying the equality (yF)oa = 3,
as in the following diagram:

A—L B

G K . v:K - H.
H

C

We write Lang G for the left Kan extension of G along F'. Right Kan extensions are defined
dually, and are written Ranp G.

Before proceeding, we give two definitions around the category of points of a (contravariant)
functor.

C D.
Definition 5.3. Consider the diagram of functors \ / The comma cat-
F G
E

egory (F' | G) is given by:
Objects: (¢,d,a) where ce C,de D, : F(c) - G(d) € E.
Morphisms: Homrg) ((c1, d1, o), (c2,da, @2)) is defined to be the set

F(B1
Fle)) 22% piey)

(51, 62) ’ﬁl . C1 — Cg, 52 . d1 - d27 and all l(m commutes.

G(B2
G(dy) 22 G(dy)

Definition 5.4. If F': ' — Set is a Set-valued functor on a locally small category C', the
category of (global) points of F'| written SCEC F(c), is the comma category (1 | F').

Explicitly, it is given by:
Objects: {(c, x) ‘ ceC,xe F(C’)}
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Morphisms: Homgeec ((e1, 1), (€, x2)) is defined to be the set
{f‘f i — g and F(f)(z1) = xQ.}

If F': C°° — D is a contravariant functor, we write { _, F'(c) for the opposite of SCEC F(c).

The category of points of a functor F' : C' — D is equipped with a projection (forgetful)
functor 7 back to C.

Lemma 5.5. (3.7.2 of [2]) Consider two functors F': A — B and G : A — C with A small
and C' cocomplete. Then the left Kan extension of G along F' exists, and is given pointwise
by a colimit

— —

acA acA
(b — V) — lim U B(a,b) 5 AS C’) — lim (j Ba, V) 5> A5 C)

Lemma 5.6. (3.7.3 of [2]) Let F' : A — B be a full and faithful functor with A a small
category. Let C' be a cocomplete category. Then for any functor A — C, the canonical
natural transformation G > (Lanp G) o F is an isomorphism (so that the inner triangle

from “‘commutes”).

Corollary 5.7. Every model M : Def(T) — Set extends uniquely along y Def(T) <> &(T)
to an inverse image functor M, as in

&(T)
] %
Def(T) —— Set

The extension to &(T) is given by a pointwise Kan extension, so that for any B € &(T),
M (B) can be computed as the colimit

lim ( J &(T)(A, B) 5 Def(T) Set> :
AeDef(T)

—

5.1.2 Coherent and compact objects in the classifying topos

Now, thinking of Def(7T') as a full subcategory of &(T'), we introduce some definitions which
categorically characterize the objects of &(T') which correspond to quotients of definable sets
by \/-definable equivalence relations and definable sets.

Definition 5.8. An object A of a topos & is compact if every covering (jointly epimorphic)
family of maps {f; ‘ i € I} of maps into A contains a finite subcover.

Definition 5.9. An object A of a topos & is stable if for every morphism f : B — A where
B is compact, the domain K of the kernel relation K = B L, Ais also compact.
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Definition 5.10. An object A of a topos & is coherent if it is both compact and stable.

Remark 5.11. In a coherent topos, the pretopos of coherent objects is not necessarily
closed under arbitrary finite colimits. This is because coequalizers are quotients by (at least)
transitive closures of certain relations, so if one has a relation R =2 X whose transitive
closure is properly ind-definable, the coequalizer y(R) =3 y(X) — Y will not be definable.

Lemma 5.12. (D3.5.7, [5]) An object B of the classifying topos & (T) of a first-order theory
T is representable (i.e. isomorphic to an object from Def(T) — &(T)) if and only if it is
coherent.

As we saw in [5.11] the prototypical example in a coherent topos of a compact non-coherent
object is the coequalizer of a definable relation R =3 X on a definable set X with a properly
ind-definable transitive closure. Our aim in this section is to prove the lemma [5.16, which
says that this obstruction to coherence actually characterizes the compact non-coherent
objects in a coherent topos.

An important basic category-theoretic fact is the canonical coproduct-coequalizer decompo-
sition of colimits (whose proof can be found, for example, in [6]).

Fact 5.13. Let D be a subcategory of C a category with all colimits.

Then the colimit lim(D) of D is isomorphic to the coequalizer of the following diagram:

(o) % (L)

where on each component s(f) € Dy of the left hand side, F' sends s(f) to itself d = s(f) by
the identity map of d = s(f), and on each s(f) € Dy of the left hand side, G sends s(f) to

t(f) by the map f.
We apply this fact to show the following:

Lemma 5.14. An object B of a coherent topos &(T') is compact if and only if every covering
of B whose domains are representables admits a finite subcover.

Proof. The implication “=" is immediate.

Conversely, suppose that {B; — B} is a covering of B. By the Kan extension colimit formula
and the coproduct-coequalizer decomposition of colimits, each B; is covered by (possibly
infinitely many) representables. The collection of all these representables across all B; form
a covering of representables of B. By assumption, this covering admits a finite subcovering.
Therefore, only finitely many of these B; were needed since all these representable coverings
factored through some B;. O]

We recount the following fact from [4], closely related to the lemma [5.16;

Fact 5.15. (Lemma 7.56 of [{)]). Let & be a topos generated by compact objects. Let X be a
coherent object of E, and let R =3 X be an equivalence relation with coequalizer R = X — X.
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Then Y is coherent if and only if R is compact.

The lemma is a sharpening of the fact [5.15;f not only will we show that a compact
non-coherent object is the quotient of a coherent object by a non-compact congruence, but
we will explicitly describe the non-compact congruence as an infinite join of coherent objects.

Lemma 5.16. Let B € &(T) be a compact non-coherent object. Then B is the quotient of a
coherent object A by a non-compact equivalence relation E which is a join of infinitely many
coherent equivalence relations on A.

Proof. Write B as a colimit of a diagram D whose objects are representables A;. By the
coproduct-coequalizer decomposition, B is a quotient of the coproduct | |, 5, A and therefore

the maps A; — | |,cp, A P8 B are a covering family for B. Since B is compact, finitely many
A;, say Aq, ..., A, suffice to cover B.

What we have said so far amounts to saying that B is a quotient of the coherent object
|_|l<n A;, since the obvious map

(L)L)

It now remains to calculate the kernel relation K’ of pg o4 and show that it is an infinite

union of coherent relations on | |,_, A;.

covers B.

We break the remainder of the proof into the following steps:
1. The kernel relation K’ of pg o is the pullback of the kernel relation K of pg along the

inclusion
EEE (|_|Ai) x <|_|A,-> <> <|_| A) x <|_| A)
<n <n AeDy AeDgy

and therefore in every model consists of those pairs (a1, as) € K such that both a; and
ag are in | |, A;.

2. Fix an arbitrary model. There is no harm in working with points and sets in a generic
model since by Deligne’s completeness theorem we can then lift our calculations to the
classifying topos.

Now, K is by definition the smallest equivalence relation containing “3b : F'(b) = a;
and G(b) = as = a; ~k az.” By how F and G are constructed, this means that
a ~ a' if and only if there are finitely many other points aq, ..., a, and maps linking
a to ay, each a; to a;41, and a, to a/, where the maps may point in either direction.

It follows that K’ is finer than just the kernel relation of the coequalizer of the pullback
of ;G 1 | |4ep, A = | aep, A along the inclusion 4, and is given by the following union:

K’:\/Rn

new
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where Ry is the diagonal copy of | |;_, A;, R consists of those pairs (a1, az) such that
there is some ajf in | | Aep, A such that there is a map f in D; that moves a; to ag or
vice-versa, and there is a map ¢ in D; that moves a; to as or vice-versa, etc.

3. Ry is the infinite union \/ .5 Sa, where each Sa, corresponds to the A containing a
particular witness a; = a;, as above.

4. Each Sy, looks like this:

\/ {(ai,a;) € A; x Aj|Jay, € Ap((ai,a) € T(f) v D(f') and (aj,a) € T(g) v T(¢)) },
(f.f".9.9")

where the 4-tuple of maps (f, f’, g, ¢') ranges over definable maps
Def (T)(A;, Ag) x Def (T)( Ay, A;) x Def(T)(A;, Ax) x Def(T) (A, Aj)

and therefore each S4, is \/-coherent.
Therefore, R; is \/-coherent.

5. Let us inductively assume that Ry is \/-coherent as the union \/,_; T;. Then Ry is
the following subset of Ry x Rj:

Ryi1 = < (a,b) | \/ de s.t. (a,¢) €Ty A (a,b) € Sy

(Ti,SA)EIX'DO

and is therefore also \/-Coherent.

We conclude that K’ is \/—Coherent. OJ

5.2 The coherence criterion
Theorem 5.17. Let &(T) be the classifying topos of a first-order theory. Let B be an object
of &(T). The following are equivalent:

1. B is coherent.

2. evp : Mod(T') — Set is the underlying functor of a pre-ultrafunctor (evg, ®) such that,
if B is canonically the colimit of representables A;, then each canonical map A; — B
induces an ultratransformation of the pre-ultrafunctors (ev ,,id) — (evpg, @).

Proof. — If B is coherent, then it is representable and (evg, id) is a pre-ultrafunctor,,
and since y : Def(T) — &(T) is full and faithful, every map A; — B corresponds to a
definable function, which induces an ultratransformation ev(A;) — ev(B).

(21 :> First, we note that under the assumptions, evpg’s transition isomorphism is
uniquely determined by the transition isomorphisms of the representables appearing
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in the Kan extension colimit formula for B: all diagrams of the form

CI)?Mi)

evp ([ 1y M) » [ Lo eve(M)

eva ([ [y M) » [ i eva(M;)

A
\ q>(1wi) \

ev 4/ > l_L-_)M eVA/(Mi)
commute, and since the Kan extension colimit formula is computed pointwise, the tran-
sition isomorphism ®(BM1') is a unique comparison map from the colimit evg ([ [,_,,, M;)
of the eva(]],_,,, M;)’s into [ ], ,,, eve(M;).

Now, knowing this, suppose B is not coherent. Then either B cannot be covered by
finitely many definables, or it can. If it can be covered by the finitely many definables
Aq,..., A,, then the associated map A; b --- L A, — B does not have a definable
kernel relation, and in fact by [5.16] the kernel relation is properly ind-definable.

A/
0,

In either case, we know what the transition isomorphism @f M) looks like. In the first
case, if B cannot be covered by finitely many definables, we still know from the Kan
extension colimit formula that it can be covered by infinitely many (A;);;. Fix a model
M and take a sequence (a;);e; such that for every A;, cofinitely many a; are not in (the
image of) A; (in B). Then for a non-principal ultrafilter & on I, [a;];ey is not in any
of the (images of the) (MY)(A;)’s. Therefore, it is not in the image of the transition
isomorphism <I>€3M), a contradiction.

In the second case, if B looks like a definable set A quotiented by a properly ind-
definable equivalence relation R = | J,_; R;, then once again we know that the transition
isomorphism

el

(H M) (A/R) — | [(Mi(A/R))
i—U i—U

is the “obvious” one. Here’s what the “obvious” map is: since A is definable, we are
really comparing two equivalence relations on the same set. On the left hand side, we
have that [a;]i—u ~ [bi]i—u if and only if there exists some R; such that (][, ,, M;)(R;)
contains ([a;], [b:])i—y. On the right hand side, we have that [a;];—y ~ [b;]i—y if and
only if a; ~g b; U-often. Since R is properly ind-definable, the equivalence relation on
the left is properly contained in the equivalence relation on the right. This containment
induces an obvious map between the quotients, and since the containment is proper,
the obvious map is not injective, and cannot be a bijection.

]

Now we use this result to prove a stronger statement than The difference is that
in the original statement of [1.8, we only concluded that X was definable, without saying
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anything about the transition isomorphism ® which allowed us to view (X,®) as a A-
functor. In fact, we can show that (X, ®) is isomorphic to ev,(,), and must therefore be an
ultrafunctor.

Corollary 5.18. Let T be Ny-categorical. Let (X, ®) be a pre-ultrafunctor. Then the un-
derlying functor X is definable if and only if for some p(x) € T, (X, ®) is isomorphic as a
pre-ultrafunctor to ev ().

Proof. By applying the lemma that A-functors preserve filtered colimits and arguing as
in the proof of 1.8 we conclude that X is isomorphic to a possibly infinite disjoint union of
representables | |._; A;. In this way, X is canonically the colimit of the representables A;. It
remains to verify the rest of item ??, i.e. the canonical inclusions Ay — | |._; A4; ~ X induce
ultratransformations.

el

Before proceeding, we reduce the problem of verifying this for all ultraproducts to just verify-
ing this for all ultrapowers. This is because, in general, every ultraproduct is a filtered colimit
of ultraproducts of countable models: for every [z;];_ in some ultraproduct | [,_,, IV;, take

a countable elementary model M; I, N; which contains z;; then there is an embedding
[y fi: 1oy Mi — 1.y Ni, and the collection of all such embeddings covers [ [, ,,, V;.
Since T' is Ng-categorical, an ultraproduct of countable models is just an ultrapower of the
unique countable model.

So, it remains to check that the diagram

()

X (MY) » X (MM
A (MY)

commutes. Each component ¢y of the ultratransformation is determined by filtered colimits
of the countable model M, with ¢y, determined by sending the support a, € A(M) to x.
Since Ay : M — MY is part of the filtered diagram of countable submodels of MY, 1u of
An(az) = X(An)(x), and since (X, @) was a A-functor, @y o X (Ay)(z) = Axn ().
On the other hand,

[ ]u(Alan) = [ear(az)]imu = Axan (@),

i—U
So the diagram commutes, and now we are done by the direction ?? = 7?7 of the theorem.

[]

6 Counterexamples in the non-Nj-categorical case

In this section, we will show that the (strengthened) conclusion of the main theorem [5.18]
fails when the assumption that T is Ny-categorical is removed. In fact, we will work with
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the simplest non-Ry-categorical theory—the theory of an infinite set, expanded by countably
many distinct constants—and construct an example of a pre-ultrafunctor which is not a
A-functor, and an example of a A-functor which fails to preserve the generalized diagonal
embeddings |3.15]

For the rest of this section, 7" will mean the theory of an infinite set with countable many
distinct constants {¢; };c,,- In a single variable, T' has a unique non-isolated type p(x), whose
realizations are those elements which are not any constants.

Definition 6.1. The underlying functor X for the pre-ultrafunctors we will construct will
be given on the objects of Mod(T") by:

X(M)=p(M)u {c,jgw‘k‘ is even} .

On elementary embeddings f : M — N, we set X(f) to just be the restriction of f to X (M).

There is an obvious map which compares [ [, ,, X (M;) with X ([ ],_,, M;), namely the inclu-
sion of the former in the latter. However, by[2.9] this cannot be an isomorphism. To complete
the construction of the counterexamples, it remains to construct transition isomorphisms for

X.

For our convenience, we record an analysis of the automorphisms of the functor X which
will be useful in the construction of the exotic A-functor [6.11

Lemma 6.2. Any automorphism n: X — X of X satisfies the following property: for every
MET, ny: X(M)— X(M) permutes the constants and fizes the nonconstants.

Proof. Fix an arbitrary model M, let Ay, : M — MY be the diagonal embedding into
some ultrapower MY, and consider the naturality diagram which must be satisfied by the

components {7} pemod(r) of 1:

M X (M) —™ X (M)
A X(Anr) X(An)
MY X (MY) ——— X (MY)

MU

Suppose 7y, sends a constant ¢ to a nonconstant ny/(c). Then the commutativity of the
naturality diagram tells us nyu sends X (Apr)(c) = Ap(e) to X(Ap)(mar(c)) = Apr(na(c)).
However, any injection M — MY which identifies constants with constants and sends non-
constants to nonconstants is an elementary embedding, and we can certainly find an embed-
ding f : M — MV which does not send the nonconstant nys(c) to Ays(nas(c)). Then, since
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elementary embeddings fix constants, the naturality diagram

M X(M) —2 5 X (M)
f X(f) X(f)
MZ/{ X (MU) 771\/[—U> X (MM)

would not commute. So, 1y, must send constants to constants. Since 7 is an isomorphism
and hence invertible, 75, cannot send nonconstants to constants either.

Now suppose that 1y, does not fix the nonconstants, so that for some nonconstant d, d #
nar(d), with nys(d) a nonconstant. Consider again the naturality diagram for Ay, : M — MY:

M X (M) —™ X (M)
Anm X(Anm) X(Awm)
MY X (MY) ——— X (MY)

MU

This tells us that nyu (A (d)) = An(nar(d)).

Let d’ stand for A(na(d)), and let e be another nonconstant in MY distinct from Ay (d)
and d’. Since d’ and e are nonconstants, we can find an automorphism o : MY — MY which
fixes Apr(d) but which moves d' to e. Then the naturality diagram for o

MU X (MY) — 25 X (MY)

o X (o) X (o)

MZ/I X (MU) 771\/1—U> X (MM)
tells us that

o o myu(An(d)) = mapu © o (Ap(d))
= o(d') = nip(Au(d))
=e=d,

a contradiction. Therefore, 1y, fixes the nonconstants. O]

Finally, we remark that any permutation of the constants can be realized in an automorphism
n:X — X, and in fact Aut(X) ~ Sym(w).
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6.1 The exotic A-functor

Now we will construct a transition isomorphism @ for X such that (X, ®) is a A-functor
which is not an ultrafunctor (and, in fact, which fails to preserve the generalized diagonal
embeddings |3.15)).

Fix I and a non-principal ultrafilter . Let (M;);e; be an I-indexed sequence of models.
Consider X ([ [;,_,, M;), in which we can canonically identify [ [, ,, X (1/;) as a subset.

Definition 6.3. Let Ay, be the complement of [ [, ,, X(M;) inside X (]],_,, Mi). A
consists of those elements [z;]; .y of [ [,_,, M; which:

1. realize the non-isolated type p(x), i.e. are not constants, and

2. such that any representative sequence (z;);_y is U-often an odd constant (equivalently,
can be represented by a sequence made up entirely of odd constants).

Let B,y be the subset of [ [, ,, X(M;) which consists of those elements [x;];—y of [,
which:

1. realize the non-isolated type p(z), i.e. are not constants, and

2. such that any representative sequence (x;);_ is U-often an even constant (equivalently,
can be represented by a sequence made up entirely of even constants).

Finally, let C(ss,) be the complement of By, inside [ [, ,,, X (M;).

Note that Cy,) consists precisely of those elements of X (], ,, M;) which are either con-

stants or which are nonconstants [z;];_; for which any representative sequence (z;);y is
U-often a nonconstant.

Since elementary embeddings preserve the property of a tuple being constant or nonconstant,
for any sequence of elementary embeddings (f; : M; — N;);—y, we have that [ f;];— restricts
to a map Cy,y) — Cw,), and furthermore because elementary embeddings fix constants,
[fi]imu restricts to bijections Ay — A,y and By — B,

Now, we have disjoint unions
X (H Mz’) = Ay © Bary © Cary and | [ X(M3) = Bary v Cony,
i—U i—U

and our task is to find a transition isomorphism @ (as,) : Aar)L B L Ciar) — By WCiar).

We define @y, to be the identity on C(yy,). It remains to specify a bijection o @ A, L
By, =~ Bu,)- Since any such o only involves identifying certain ultraproducts of constants
with other ultraproducts of constants, then after fixing a o we can use o to define @y, for
arbitrary I-indexed sequences of models (V;). With this setup, we will show that any choice
of o works.

While in general, transition isomorphisms depend on the three pieces of information I, and
(M;), we have constructed candidate transition isomorphisms by making a choice o which
only depends on I and U, so we make this explicit by writing o7 .
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Now, fix o7 and let (M; Eid i)ier be an I-indexed sequence of elementary embeddings, and

consider the pre-ultrafunctor diagram

()
X([fz‘]mu)l l[X(fz')]Hu
X (I Tiu Vi) Ko [ 1 X(NG).

To show it commutes, consider an arbitrary element [z;];_ of the top left corner X ([ [,_,,, M;).
There are three cases:

L. [#;]imy is in Cpy,. Recall that ®(py,) and ®(y,) were defined to be the identities on
Cimy), Chy), and that [ f];—y restricts to a map Ciay,) — Cin,). Chasing [2;];.y through
the diagram, we get

(23], —— (@il

|

Uizl —— [fiwil,oy -

2. [xi]imu is in Aag,). Recall that [ f;];.y restricts to bijections A,y — A(w,) and B,y —
B(n,). Chasing [;];y through the diagram, we get

[xi]’i—»b[ . [O—I,L{xi]i_,u

| J

(7], —— o],y -

3. [xilimu is in Bag,). Recall that [ f;];.y restricts to bijections A,y — A(w,) and B,y —
B(n,). Chasing [2;];—y through the diagram, we get

[xl']’ia(/{ . [UI,Uxi]i_ﬂ,[

| J

[xi]i—ﬂ/{ — [UI,M%]pu .

Therefore, after making choices of bijections o7y for every I and U, we obtain a transition
isomorphism ® such that (X, ®) is a pre-ultrafunctor.

(X, @) is also a A-functor: for any ultrapower MY, recall that the subset C(as,) of X (M u )
contains all those elements which are constants or nonconstants that are ultraproducts of
nonconstants. In particular, if a € M, then Ay (a) = [a];—y is a constant if @ is a constant or
a nonconstant which is an ultraproduct of nonconstants if a is a nonconstant, so the image of
Ax(u is contained inside Cipy,) € X (M), X(Ayy) is just the restriction of Ay to X (M),
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so the image of X (A,/) also lies in C(,s) and agrees with the image of Ax (. This means
in the below diagram, the upper-left and lower-left triangles commute:

X (MY)

AN

X(M) EEEm— O(M) Dary

Furthermore, ® (5 was defined to be the identity on C(,s), so the curved subdiagram on the
right commutes. Therefore, the entire diagram commutes; in particular, the outer triangle
from the definition [3.8| of a A-functor commutes, so (X, ®) is a A-functor.

The theory T is countable, and by strong conceptual completeness there as many isomor-
phism classes of ultrafunctors as there are definable sets of T. But for any I and U, any
choice of a bijection o7y worked. We will show that there are at least uncountably many
isomorphism classes of A-functors (X, ®) that arise from our construction. This will imply
that there is some choice of ® such that (X, ®) is not an ultrafunctor.

Let I now be countable, and let ® and &’ be two different transition isomorphisms which
arise from making the choices of o7y and o7, during our construction. An isomorphism of
pre-ultrafunctors (X, ®) — (X, ®’) is an automorphism 1 : X — X such that, additionally,
all diagrams of the form
>
X (Toy M) —— Ty X (M)
Mli—u le ll—l,gu nu;

commute.

By our earlier analysis of the automorphisms of X, it is easy to see that when restricted
to C(ar,), the above diagram commutes.

However, if we restrict to A,y U Bay,), then chasing an element around the diagram

oru

Aan) W Bory —— By
Ml Mll ll_[i—d/{ M
A(Mi) L B(Mi) —)U, B(Mi)
u
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yields the tentative equality

[:L‘Z]Z—J/{ : ’ O_I,M(['xi]i_,l/{

| !

(2,0 > oy ([2]) = T (0120 ([23],00))

so we see that if the transition isomorphisms ® and @’ induced by o4 and o7, are iso-
morphic, then there is an automorphism 7 : X — X such that [[, ,, m, © o1y = 07y
Therefore, defining G' to consist of all ultraproducts [ [, ,,,n(,) admissible in the above di-
agram (so only those which restrict to a permutation on B(y,)), the number of isomorphism
classes among the (X, ®) is bounded from below by the number of orbits of the action by
composition

G —~ BijeCtiOIlS (A(Mi) L B(Mi), B(Mi)) .

However, G can be identified with a subgroup of Sym(w)”. Since I was countable, Sym(w)¥
has size < ¢ the size of the continuum.

On the other hand, the set on which G acts has the same cardinality as | Sym (By,)) | = 2%

Therefore, this action has uncountably many orbits, and so there are uncountably many
isomorphism classes of (X, ®) arising from our construction. So, one of them cannot be an
ultrafunctor.

We can also see that ® can be chosen to violate a generalized diagonal embedding |3.15] Fix
indexing sets I and J such that |I| > |J|, a surjection ¢g : I — J, and U an ultrafilter on [
with V its pushforward g.U. Let (M;);e; be a J-indexed sequence of models.

Then the associated generalized diagonal embedding Ay : [ ] iy M — 11— My induces,
informally speaking, a relationship between ultraproducts computed with respect to different
indexing sets and ultrafilters: for it to be preserved, the diagram

X(Ag)
X <Hj_>v Mj> — X (Hi—»b{ Mg(i))

(I)(Mj)l l‘l’wg(i))

Hj—»V X (M;) T(g)) [Tiu X (M)

must commute, for all choices of (M;). However, our construction of ® involved a speci-
fication of @5,y based on a choice of o5y which is independent of the choice of o7,, used
to specify @, ). To make this concrete, if for a given ¢ and (M;) the diagram above
happens to commute, then for any a € Ay, in the upper-left corner which gets sent to some
be B(Mg(i)) in the lower-right corner, we can change our choice of () SO that Axg) o P )
sends a to a different b’ # b while keeping the rest of ® the same, with the modified transition
isomorphism @’ still making (X, ®') a A-functor.
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6.2 The exotic pre-ultrafunctor

In the previous section, the transition isomorphisms ® making (X, ®) a A-functor were
constructed to be the identity on C(ap), and hence also restricted to the identity on the
image of diagonal embeddings Ay, : M MY,

In general, C(yy,) splits into a disjoint union of even constants and nonconstants which are
ultraproducts of nonconstants of M;:

C(Mi) = C(CMz‘) - C(nf\c/fz)

We can easily modify the construction of the transition isomorphism to mot preserve the
diagonal map, by requiring that & restricts to the 1dent1ty only on C’( A1) while on CF (M) We
now require that ® restricts to any permutation C,s,) — C(as,), while keeping the rest of the
construction the same.

Now we verify the pre-ultrafunctor condition. When we verified the pre-ultrafunctor condi-
tion during the construction of the exotic Delta-functor, we had three cases [6.1] according
to whether an element [2;];y € X ([ [, Mi) was in Ay, B,y or Ciary). With the new
definition, the verification of the first two cases remains the same, but the case of Cyy,
splits into the two case of whether [z;];_.,s € C(a,) is a constant or nonconstant. If [x;]i—y
is a nonconstant, then since ® still acts as the identity on [x;];,y, the diagram commutes.
If [#;]i—u is a constant, then if ® restricts to a nontrivial permutation of C(ys,), then the
diagram commutes because elementary embeddings preserve constants.

However, when ® restricts to a nontrivial permutation on the even constants, the diagonal
embedding Ay, : M — MY is not preserved, i.e. the triangle diagram in does not
commute. For any even constant ¢ in X (M) which is not fixed by ® (and identifying X (M )4
as a subset of X (M“), and this as a subset of MY, X(Ay)(c) = Axan(c) = Apn(c), but
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