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1 Introduction

Let T be a first-order theory. Any formula ϕpxq of T eq (so a definable set of T quotiented
by a definable equivalence relation of T ) induces a “functor of points” evϕpxq on the category
ModpT q of models of T with maps the elementary embeddings, by sending M ÞÑ ϕpMq. In
this way the category DefpT q of 0-definable sets of T embeds into the category of functors
rModpT q,Sets, via the “evaluation map” ev : T Ñ rModpT q,Sets.

Here is the motivating problem: how do we recognize, up to isomorphism, the image of ev
inside rModpT q,Sets? That is, given an arbitrary functor X : ModpT q Ñ Set—some way
of attaching a set to every model of T , functorial with respect to elementary embeddings—
how can we tell if X was isomorphic to some functor of points evϕpxq for some formula
ϕpxq P T eq? We call such functors X definable.

A necessary condition for definability is compatibility with ultraproducts.  Los’ theorem tells
us that evaluation functors evϕpxq commute with ultraproducts, that is,

ϕ

˜

ź

iÑU
Mi

¸

“
ź

iÑU
ϕpMiq.

Strong conceptual completeness for first-order logic, as proved by Makkai in [7], provides
a sort of converse to  Los’ theorem, and says that the definable functors are precisely the
ones which preserve ultraproducts and certain formal comparison maps between ultraprod-
ucts, called ultramorphisms, which generalize the diagonal embeddings of models into their
ultrapowers. This recovers T up to bi-interpretability. To precisely state Makkai’s result,
we must formalize what it means for an arbitrary functor X : ModpT q Ñ Set to “preserve
ultraproducts” and “preserve” these ultramorphisms. We will go into more detail in 3.

Any general framework which recovers theories from their categories of models should be
considerably simplified for ℵ0-categorical theories, whose definable sets are exceptionally
easy to understand (being precisely the finite disjoint unions of orbits of the automorphism
group) and in fact are determined up to bi-interpretability by the automorphism group of
the unique countable model topologized by pointwise convergence.

We will show that when T is ℵ0-categorical, we can check definability by checking com-
patibility with ultraproducts and just diagonal embeddings into ultrapowers, so that for
ℵ0-categorical theories, the statement of strong conceptual completeness can indeed be sim-
plified.

2 Preliminaries

Throughout, we will assume our theories eliminate imaginaries, so that T “ T eq, and “de-
finable” means “definable without parameters”. When we say “sort” or “variable”, we will
mean an arbitrary finite tuple of sorts and variables.
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To a first-order theory T , one can associate two categories: the category of models ModpT q,
and the category of definable sets DefpT q.

Definition 2.1. The category of models ModpT q of T comprises the following data:

ModpT q
df
“

#

Objects: models M |ù T

Morphisms: elementary embeddings.

Definition 2.2. The category of definable sets DefpT q of T comprises the following
data:

DefpT q
df
“

#

Objects: equivalence classes of formulas mod T -provable equivalence

Morphisms: equivalence classes of definable functions mod T -provable equivalence.

By the completeness theorem, T -provable equivalence (T |ù ϕpxq Ø ψpxq) is the same thing
as having identical points in every model; by the downward Lowenheim-Skolem theorem, it
suffices to check having identical points in models bounded by the size of the theory.

Remark 2.3. Models of T are precisely the functors M : DefpT q Ñ Set which preserve
finite limits, finite sups in subobject lattices, and images. In this way, evϕpxq is literally an
evaluation map.

Definition 2.4. Let pAiqiPI be an I-indexed collection of nonempty sets. Let U be an
ultrafilter on I. The ultraproduct of pAiqiPI with respect to the ultrafilter U , which we
write as

ś

iÑU Ai, is defined as the following quotient,

ź

iÑU
Ai

df
“
ś

iPI Ai
L

EU ,

where the equivalence relation EU is defined by: paiqiPI „EU pbiqiPI if and only if the set P
of indices j P I such that aj “ bj is in the ultrafilter U .

If paiqiPI is a sequence of elements from the Ai, we write raisiÑU for its equivalence class in
ś

iÑU Ai.

Remark 2.5. The above definition fails to produce a non-empty ultraproduct when even a
single Aj is empty, although the construction should be unperturbed by anything happening
on an ultrafilter-small set of models. We can address this by more generally defining an
ultraproduct of sets as the colimit of the following filtered diagram DAiÑU :

DAiÑU
df
“

#

Objects:
ś

iPP Ai such that P P U
Morphisms: for P 1 Ď P both in U ,

ś

iPP Ai �
ś

iPP 1 Ai
.

One verifies that when the Ai are nonempty, lim
ÝÑ

DAiÑU agrees with the definition 2.4 above,

and that when a U -small set of the Ai are empty, lim
ÝÑ

DAiÑU agrees with
ś

iÑU Ai if, when

computing the latter, one replaces the empty sets with arbitrary nonempty sets.
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Although this definition via a filtered colimit of a diagram of infinite products works in the
category Set, it cannot generally work in ModpT q, because one cannot necessarily form a
product of two models of a first-order theory (e.g. fields). However, ultraproducts of models
still make sense, and codify compactness arguments (as well as the compactness theorem
itself.)

Let me elucidate the previous sentence by spelling out the proofs, using ultraproducts, of
some compactness-related statements.

Here’s the compactness theorem:

Proposition 2.6. A theory T has a model if and only if every finite fragment T 1 Ď T has a
model.

Proof. For the non-trivial “if” direction, let D the directed partial order of finite fragments

T 1 Ď T . Let U be an ultrafilter completing the filter base consisting of those sets PT 1
df
“ tT 2 P

D
ˇ

ˇT 2 Ě T 1u. Let MT 1 |ù T 1, and consider the ultraproduct
ś

T 1ÑU MT 1 . For any sentence
σ P T , the collection of indices T 1 P D such that MT 1 |ù σ contains at least Ptσu, so is in U ,
so

ś

T 1ÑU MT 1 |ù σ; hence,
ś

T 1ÑU MT 1 |ù T .

Here are some statements proved by a compactness argument:

Proposition 2.7. Suppose that in every model M |ù T , the I-indexed definable functions

Xi
fi
Ñ X jointly cover the definable set X. Then finitely many fi cover X.

Proof. Let D be the directed partial order of finite subsets of I. Suppose that for every
F P D, there is a model MF where the images timpfiq

ˇ

ˇ i P F u do not cover XpMq, witnessed
by an xF P XpMqz

Ž

iPF impfiq. Let U be an ultrafilter on D as in the proof of 2.6. Consider
the element rxF sFÑU of the ultraproduct

ś

FÑU MF . Fix an F P D. The set of indices
tF

ˇ

ˇxF R
Ž

iPF impfiqu contains the U -large set PF . Since F was arbitrary, rxF sFÑU is not
in any impfiq, giving the contrapositive.

Proposition 2.8. If a sentence σ is true for all fields of characteristic zero, there is some
N such that σ is true for all fields of characteristic p ą N .

Proof. Here are two proofs: the first one is just to take an ultraproduct of counterexamples.

The second proves it directly. Let D enumerate all the complete theories of fields of positive
characteristic. Form a filter base tPpup prime where Pp comprises those theories of fields
whose characteristics are greater than p. This is closed under finite intersection (and in fact
PpXPq “ Pmaxpp,qq). Let U be any completion of this filter base. For each T P D, let MT |ù T .
In the ultraproduct

ś

TÑU MT , for every positive p, it is true that the characteristic is not
p on a U -large set, so this has characteristic zero, and by assumption, σ is true on a U -large
set.

Since U was arbitrary, and the intersection of the non-principal ultrafilters completing the
filter base tPpup prime is the filter base tPpup prime, σ is true on some PN .
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Since ultraproducts codify compactness and the compactness theorem is a key feature of first-
order logic, it is not unreasonable to expect that invariance with respect to ultraproduct-
induced structure characterizes first-order definability in the models of a theory. This is
strong conceptual completeness, which we will discuss in the next section.

A special case of strong conceptual completeness is the following definability criterion, which
follows from the Beth theorem, though it is not necessary to invoke it.

Theorem 2.9. Let X be a functor ModpT q Ñ Set which assigns to each model M a
subset of some sort of M , such that for every I, U , and pMiqiPI the equality X p

ś

iÑUq “
ś

iÑU XpMiq holds. Then X is definable.

Proof. Expand the language L of T to the language L1 by adding a new constant symbol
c, meant to be interpreted arbitrarily inside XpMq for every M |ù T . Consider the class of
L1-structures pM, cq where M |ù T and c P XpMq. By the Chang-Keisler [3] ultraproduct
criterion for a class to be elementary and the assumptions on X, this is an elementary class
of L’-structures. Let T 1 axiomatize this class. Since we have only added a constant symbol
to the language, the difference between T and T 1 consists of L1-sentences tϕipcquiPI , so that
XpMq “

Ş

iPI ϕipMq. If I was infinite, then there is a model M , a sequence pciqiPI in M
such that for a non-principal ultrafilter U on I, rcisiÑU is in

Ş

iPI ϕi
`

MU
˘

but each ci is not
in ϕipMq, hence not in XpMq. Then the inclusion

˜

č

iPI

ϕipMq

¸U

Ĺ
č

iPI

ϕi
`

MU˘

is proper and not an equality, a contradiction.

Strong conceptual completeness, which we will review in the next section 3.19, generalizes
the theorem 2.9 by removing the assumptions of “subset” (and therefore also that of being
able to talk about “equality”).

3 Strong conceptual completeness

3.1 Pre-ultrafunctors

When X : ModpT q Ñ Set is evϕpxq and one proves the  Los theorem

X

˜

ź

iÑU
Mi

¸

“
ź

iÑU
XpMiq,

one has the luxury of being able to test the displayed equation above between two subsets
of (the interpretation in

ś

iÑU Mi of) the ambient sort of the formula ϕpxq. If X is merely
isomorphic to evϕpxq, then X p

ś

iÑU Miq and
ś

iÑU XpMiq might be entirely different sets,
with only the isomorphism to evϕpxq to compare them, so that testing equality as above is
not a well-formulated question; rather, one asks for an isomorphism.
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Remark 3.1. Given a natural isomorphism η : X » evϕpxq with components tηM : XpMq »
ϕpMquMPModpT q, we have for every ultraproduct

ś

iÑU Mi a commutative square

X p
ś

iÑU Miq
ś

iÑU XpMiq

ϕ p
ś

iÑU Miq
ś

iÑU ϕpMiq.

ηś
iÑU Mi

ΦpMiq

ś

iÑU ηMi

where the dashed map ΦpMiq is the composition of isomorphisms p
ś

iÑU ηMi
q
´1
˝ ηś

iÑU Mi
.

It is easy to see that the statement of  Los’ theorem is functorial on elementary embeddings.
That is, for every I, every ultrafilter U on I, and every sequence of elementary embeddings
fi : Mi Ñ Ni, the diagram

ϕ p
ś

iÑU Miq
ś

iÑU ϕpMiq

ϕ p
ś

iÑU Niq
ś

iÑU ϕpNiq

rfisiÑU |ϕp
ś

iÑU Miq
rfi|ϕpMiqsiÑU

commutes.

Definition 3.2. For an arbitrary functor X : ModpT q Ñ Set, if we additionally spec-
ify for every I,U , pMiqiPI the data of a transition isomorphism ΦpMiq : X p

ś

iÑU Miq Ñ
ś

iÑU XpMiq, then we say that pX,Φq “commutes with ultraproducts” if all diagrams

X p
ś

iÑU Miq
ś

iÑU XpMiq

X p
ś

iÑU Niq
ś

iÑU XpNiq

ΦpMiq

XprfisiÑU q rXpfiqsiÑU

ΦpNiq

commute. We let Φ abbreviate all the transition isomorphisms, and we call a pair pX,Φq a
pre-ultrafunctor. We will abuse terminology by referring to Φ as “the” transition isomor-
phism of the pre-ultrafunctor pX,Φq.

Given two pre-ultrafunctors pX,Φq and pX 1,Φ1q, we define a map between them, called
an ultratransformation, to be a natural transformation η : X Ñ X 1 which satisfies the
following additional property: all diagrams

X p
ś

iÑU Miq
ś

iÑU XpMiq

X 1 p
ś

iÑU Miq
ś

iÑU X
1pMiq

ΦpMiq

ηś
iÑU Mi

ś

iÑU ηMi

Φ1
pMiq

must commute.
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With this terminology, the theorem 2.9 says that if X is a sub-pre-ultrafunctor of an evalu-
ation functor evϕpxq, then X is definable.

In light of the above definition, we can reformulate our observation about a definable functor

X
η
» evϕpxq above as saying that the natural isomorphism η canonically equips X with a

transition isomorphism such that η is an ultratransformation.

Remark 3.3. Every functor of points evϕpxq can be canonically viewed as a pre-ultrafunctor
with the transition isomorphisms Φ just the identity maps (corresponding to the equality
signs in the above diagrams).

One checks that if X and Y are definable sets, and f : X Ñ Y is a definable function, then
the induced natural transformation between evaluation functors evf : evX Ñ evY is in fact
an ultratransformation. (This contains Los’ theorem: in the proof, one is really showing that
if S is the sort containing a formula ϕpxq, then the canonical definable injection i : ϕpxq ãÑ S
induces an ultratransformation; the fact that the transition isomorphisms are all identities
means that one ends up with the usual equality.)

Definition 3.4. The category of pre-ultrafunctors PUltpModpT q,Setq comprises the
following data:

PUltpModpT q,Setq
df
“

#

Objects: pre-ultrafunctors pX,Φq : ModpT q Ñ Set

Morphisms: ultratransformations η : pX,Φq Ñ pX,Φ1q.

Remark 3.5. By the remark 3.3, the evaluation functor ev : DefpT q Ñ rModpT q,Sets
further factors through PUltpModpT q,Setq:

DefpT q PUltpModpT q,Setq

rModpT q,Sets

ev

xev

,

where the arrow PUltpModpT q,Setq is just the forgetful functor pX,Φq ÞÑ X.

Note that whenever there is an isomorphism η : X » Y as functors ModpT q Ñ Set,
and pX,Φq is a pre-ultrafunctor, then by conjugating Φ by the isomorphism X » Y (as
in the diagram 3.1), one canonically equips Y with a transition isomorphism Φ1 such that
η : pX,Φq Ñ pY,Φ1q is an ultratransformation.

Remark 3.6. That is, X is definable if and only if there is a transition isomorphism Φ
such that pX,Φq is isomorphic to pevϕpxq, idq for some formula ϕpxq P T . We will suppress
the canonical transition isomorphism id and just say that pX,Φq is isomorphic to evϕpxq,
understanding that this isomorphism is happening in PUltpModpT q,Setq.

The pre-ultrafunctor condition 3.2 only stipulates compatibility with respect to ultraproducts
of elementary embeddings. However, there are other elementary embeddings which arise
purely formally between different ultraproducts with respect to different indexing sets and
ultrafilters, and should be viewed as part of the formal structure on ModpT q which is induced
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by being able to take ultraproducts. The canonical example is the diagonal embedding of
a model into its ultrapower (which compares an ultrapower M with respect to the trivial
indexing set and trivial ultrafilter to an ultrapower MU with respect to a nontrivial indexing
set and a nontrivial ultrafilter).

Definition 3.7. Fix I, U , and a model M |ù T .

The diagonal embedding ∆M : M ÑMU is given by sending each a PM to the equivalence
class of the constant sequence rasiÑU .

We can stipulate that a pre-ultrafunctor furthermore preserves the diagonal embeddings.

Definition 3.8. We say that a pre-ultrafunctor 3.2 pX,Φq is a ∆-functor if for every I, for

every U , and for every M and the diagonal embedding M
∆M
ÝÑMU , the diagram

X
`

MU
˘

XpMq

XpMqU

ΦpMq

Xp∆M q

∆XpMq

commutes.

Remark 3.9. It is not true in general that the embedding pev : DefpT q Ñ PUltpModpT q,Setq
is an equivalence of categories. If pX,Φq is isomorphic to evϕpxq, then pX,Φq preserves the
diagonal embeddings of models into their ultrapowers (in the sense of the definition 3.8).
However, later, we will exhibit an example 6.2 of a pre-ultrafunctor which does not preserve
diagonal embeddings.

It is not true either that in general being a ∆-functor characterizes the image of pev; we later
construct a counterexample 6.1.

Strong conceptual completeness 3.19 says that if we sufficiently generalize the diagonal em-
beddings to a large-enough class of formal comparison maps between ultraproducts (with
respect to possibly different indexing sets and ultrafilters), then we can characterize the
image of pev as precisely those pre-ultrafunctors which additionally preserve all these formal
comparison maps. The notion we want is that of an ultramorphism.

3.2 Ultramorphisms

Definition 3.10. ([7], Section 3) An ultragraph Γ comprises:

(i) Two disjoint sets Γf and Γb, called the sets of free nodes and bound nodes, respec-
tively.

(ii) For any pair γ, γ1 P Γ, there exists a set Epγ, γ1q of edges. This gives the data of a
directed graph.
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(iii) For any bound node β P Γb, we assign a triple xI,U , gy df
“ xIβ,Uβ, gβy where U is an

ultrafilter on I and g is a function g : I Ñ Γf .

Definition 3.11. ([7], Section 3) An ultradiagram of type Γ in a pre-ultracategory S is
a diagram A : Γ Ñ S assigning an object A to each node γ P X, and assigning a morphism
in S to each edge e P Epγ, γ1q, such that

Apβq “
ź

iPIβ

Apgβpiqq{Uβ

for all bound nodes β P Γb.

Given this notion of a diagram with extra structure, there is an obvious notion of natural
transformations between such diagrams which preserve the extra given structure.

Definition 3.12. ([7], Section 3) Let A,B : Γ Ñ S. A morphism of ultradiagrams Φ :
AÑ B is a natural transformation Φ satisfying

Φβ “
ź

iÑUβ

Φgβpiq

for all bound nodes β P Γb.

Now we define ultramorphisms.

Definition 3.13. ([7], Section 3) Let HompΓ,Sq be the category of all ultradiagrams of type
Γ inside S with morphisms the ultradiagram morphisms 3.12 defined above. Any two nodes
k, ` P Γ define evaluation functors pkq, p`q : HompΓ,Sq Ñ S, by

pkq
´

A
Φ
Ñ B

¯

“ Apkq
Φk
Ñ Bpkq

(resp. `).

An ultramorphism of type xΓ, k, `y in S is a natural transformation δ : pkq Ñ p`q.1

Let us unravel the definition 3.13 for the prototypical example ∆ : M ãÑ MU of an ultra-
morphism.

Example 3.14. Given an ultrafilter U on I, put:

• Γf “ tku,

• Γb “ t`u,

• Epγ, γ1q “ H for all γ, γ1 P Γ,

• xI`,U`, g`y “ xI,U , gy where g is the constant map to k from I.

1Note that in our terminology, an ultramorphism, singular, refers to a collection of possibly many maps
(the components of the natural transformation pkq Ñ p`q).
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By the ultradiagram condition 3.11, an ultradiagram A of type Γ in S is determined by Apkq,
with Ap`q “ ApkqU .

By the ultradiagram morphism condition 3.12, an ultramorphism of type xΓ, k, `y must be a
collection of maps

`

δM : M ÑMU
˘

MPModpT q
which make all squares of the form

MU NU

M N

fU

∆M

f

∆N

commute. It is easy to check that setting δM “ ∆M the diagonal embedding gives an
ultramorphism.

Definition 3.15. The next least complicated example of an ultramorphism are the gener-
alized diagonal embeddings. Here is how they arise: let g : I Ñ J be a function between
two indexing sets I and J . g induces a pushforward map g˚ : βI Ñ βJ between the spaces

of ultrafilters on I and J , by g˚U
df
“ tP Ď J

ˇ

ˇ g´1pP q P U . Fix U P βI and put V df
“ g˚U . Let

pMjqjPJ be a J-indexed family of models.

Then there is a canonical “fiberwise diagonal embedding”

∆g :
ź

jÑV
Mj Ñ

ź

iÑU
Mgpiq

given on rajsjÑV by replacing each entry aj with g´1ptajuq-many copies of itself.

In terms of the definition 3.13 of an ultramorphism, the free nodes are J , and there are two
bound nodes k and `. To k we assign the triple xJ,V , idJy and to ` we assign the triple
xI,U , gy. Then ∆g induces an ultramorphism pkq Ñ p`q.

Now we state what it means for ultramorphisms to be preserved. One should keep in mind
the special case of the diagonal ultramorphism.

Definition 3.16. Let pX,Φq : ModpT q Ñ Set be a pre-ultrafunctor, and let δ be an
ultramorphism in ModpT q and δ1 an ultramorphism in Set, both of ultramorphism type
xΓ, k, `y

Recall that in the terminology of the definition 3.13, δ is a natural transformation pkq
δ
Ñ p`q

of the evaluation functors

pkq, p`q : HompΓ,ModpT qq Ñ ModpT q.

(Resp. δ1, Set.)

Note that for any ultradiagram M P HompΓ,ModpT qq, X ˝ M is an ultradiagram in
HompΓ,Setq. We say that X carries δ into δ1 (prototypically, δ and δ1 will both be
canonically defined in the same way in both ModpT q and Set and in this case we say that
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δ has been preserved) if for every ultradiagram M P HompΓ,ModpT qq, the diagram

X pM pkqq X pM p`qq

pXM qpkq pXM qp`q

XpδM q

ΦMpkq ΦMp`q

δ1
XM

commutes. (We are abusing notation and understand that in the above if k is not a bound
node, then the ultraproduct on the bottom left becomes trivial and ΦM pkq is actually the
identity map idXpM pkqq (resp. `, ultraproduct on the bottom right).)

Note that what is really happening is that we are applying the covariant Hom-functor
HompX,´q to push forward each ultradiagram M to an ultradiagram X ˝ M , and then
asking that the pushed-forward ultramorphism Xpδq is isomorphic to δ1XM via X’s transi-
tion isomorphism Φ.

3.3 Stating strong conceptual completeness

Just as ∆-functors 3.8 are pre-ultrafunctors which additionally preserve the diagonal em-
bedding ultramorphisms, we define ultrafunctors to be pre-ultrafunctors which preserve all
ultramorphisms.

Definition 3.17. ([7], Section 3) An ultrafunctorX : ModpT q Ñ Set is a pre-ultrafunctor
which respects the fibering over Set: for every δ P ∆pSetq, X carries δModpT q into δSet (in
the sense of the definition 3.16 above) for all δ P ∆pSetq.

Definition 3.18. A map between ultrafunctors is just an ultratransformation 3.2 of the
underlying pre-ultrafunctors. Write UltpModpT q,Setq for the category of ultrafunctors
ModpT q Ñ Set.

There is a canonical evaluation functor

rev : DefpT q Ñ UltpModpT q,Setq

sending each definable set A P T to its corresponding ultrafunctor revA, and we now have the
following picture of factorizations of the original evaluation map ev : DefpT q Ñ rModpT q Ñ
Sets:

DefpT q UltpModpT q,Setq

PUltpModpT q,Setq

rModpT q,Sets

ev

xev

Ăev

Now, we can state strong conceptual completeness.
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Theorem 3.19. ([7], Section 4) rev : DefpT q Ñ UltpModpT q,Setq is an equivalence of
categories.

4 Strong conceptual completeness for ℵ0-categorical the-

ories

Of course, the point of all this is that when the theory is nice enough, we can ignore the more
general ultramorphisms and still obtain a statement of strong conceptual completeness. In
this section, we show that when the theory T is additionally assumed to be ℵ0-categorical,
we can replace “ultrafunctor” with ∆-functor 3.8 in the statement of strong conceptual
completeness, so that only the simplest ultramorphisms 3.13 suffice to state strong conceptual
completeness for ℵ0-categorical theories.

4.1 Preliminaries on ℵ0-categorical theories

Definition 4.1. A theory T is ℵ0-categorical if T is countable and has, up to isomorphism,
a single countable model.

The definable sets of ℵ0-categorical theories are exceptionally easy to understand: they are
precisely the finite disjoint unions of orbits of the automorphism group; furthermore, ℵ0-
categorical theories are determined up to bi-interpretability by the automorphism group of
the unique countable model topologized by pointwise convergence.

Theorem 4.2. (Ryll-Nardzewski) T is ℵ0-categorical if and only if it has only finitely many
types in each sort (this implies that all the types are isolated.)

Corollary 4.3. If M |ù T is the unique countable model of the ℵ0-categorical theory T , then
M has only finitely many AutpMq-orbits in each sort (each corresponding to the points of
an isolated type.)

Theorem 4.4. (Coquand-Ahlbrandt-Ziegler) Let T and T 1 be ℵ0-categorical with countable
models M and M 1. Then T and T 1 are bi-interpretable if and only if there is an isomorphism
of topological groups AutpMq » AutpM 1q, where AutpMq and AutpM 1q are topologized by
pointwise convergence.

It follows that in the unique countable model M |ù T of an ℵ0-categorical theory, a subset of
a sort in M is definable if and only if it is invariant under the action of AutpMq. In fact, any
AutpMq-invariant quotient of a definable subset of M is definable in T eq, since the kernel
relation of the quotient will be a definable set.

12



4.2 Diagonal embeddings and the finite support property

As a warm-up to the theorem 4.8, we will show in general that if X : ModpT q Ñ Set is a
∆-functor, X must map AutpMq continuously to SympXpMqq.

Proposition 4.5. Let T be any theory, and let pX,Φq : ModpT q Ñ Set be a ∆-functor.
Then for any model M |ù T , the restriction of X to a map AutpMq Ñ SympXpMqq is a con-
tinuous group homomorphism (where both groups are topologized by pointwise convergence).

Proof. Since X is a functor, its restriction to AutpMq is a group homomorphism. To check
continuity, let D be a directed partial order indexing a net of automorphisms rσαsαPD. It
suffices to check that if rσαsαPD Ñ σ in AutpMq, then rXσαsαPD Ñ Xσ in SympXpMqq.

We will suppose not and take an ultraproduct of counterexamples. So suppose that rXσαsαPD
does not converge to Xσ. The basic open neighborhoods Bc ÞÑ d of Xσ are parametrized by
tuples c, d of the same sort, and they look like this:

Bc ÞÑ d
df
“ tρ : XpMq Ñ XpMq

ˇ

ˇ ρpcq “ du.

Since rXσαsαPD does not converge to Xσ, then there exists some neighborhood Bc ÞÑ d such
that for every α P D, there exists an α1 ě α P D such that Xσα1 R Bc ÞÑ d.

Now, let I be the underlying set of D, and consider the collection of subsets tPα Ď IuαPD,
where each Pα is the set of all β P D such that β ě α. Since D was a directed partial order,
tPαuαPD has the finite intersection property, and can therefore be completed to an ultrafilter
U .

Then consider the ultraproduct of automorphisms

rXσα1sαÑU : XpMqU Ñ XpMqU .

Let ∆XpMq be the diagonal embedding of XpMq into XpMqU . Since every Xσα1 sends c to
d1 ‰ d, rXσα1sαÑU sends ∆XpMqpcq to ∆XpMqpd

1q ‰ ∆XpMqpdq. Therefore,

rXσα1sαÑU ˝∆XpMq ‰ rXσsαÑU ˝∆XpMq.

By the definition 3.8 of a ∆-functor, we can replace ∆XpMq with ΦpMq ˝ X p∆Mq. By the
definition 3.2 of a pre-ultrafunctor, we can replace rXσα1sαÑU and rXσsαÑU with

ΦpMq ˝X prσα1sαÑUq ˝ Φ´1
pMq and ΦpMq ˝X prσsαÑUq ˝ Φ´1

pMq.

Substituting into the displayed inequality above and letting inverse transition isomorphisms
cancel out, we obtain

ΦpMq ˝X prσα1sαÑUq ˝X p∆Mq ‰ ΦpMq ˝X prσsαÑUq ˝X p∆Mq

and since ΦpMq is a bijection, we may omit it:

X prσα1sαÑUq ˝X p∆Mq ‰ X prσsαÑUq ˝X p∆Mq .

13



Since X is a functor, we conclude that

X prσα1sαÑU ˝∆Mq ‰ X prσsαÑU ˝∆Mq

and since X is certainly a function from ModpT qpM,MUq Ñ Set
`

XpMq, X
`

MU
˘˘

, this
means that

rσα1sαÑU ˝∆M ‰ rσsαÑU ˝∆M .

But this inequality says that there is some a P M such that for every α, there is an α1 such
that tσα1paquα disagrees with tσpaquα on some U -large set of indices P . Letting c “ a and
d “ σpcq, we have that a U -large subset of tσα1paquα lies outside of the basic open Bc ÞÑ d Q σ.
Since U contains all the principal filters in D, we have that for every α P D, the intersection
P X Pα is nonempty. So, for the basic open Bc ÞÑ d Q σ, we have that for every α we can find
some α2 P P X Pα such that σα2 R Bc ÞÑ d. Therefore, rσαsαPD does not converge to σ, which
is the contrapositive.

Definition 4.6. Fix X a functor ModpT q Ñ Set which restricts to continuous maps on
automorphism groups. Fix M |ù T . From the continuity we can associate to every tuple
x P XpMq a tuple ax P M as follows: the preimage X˚ Stabpxq of the basic open subgroup
Stabpxq Ď SympXpMqq must be open, and must therefore be covered by the cosets of a basic
open subgroup of AutpMq, which is of the form Stabpaxq for some tuple ax.

We call the tuple ax the support of x. It satisfies the following property: whenever σ1, σ2 P

AutpMq agree on ax, then Xσ1, Xσ2 agree on x. By sending ax ÞÑ x and letting AutpMq
act, this induces an AutpMq-equivariant surjection from the orbit of ax to the orbit of x.

Lemma 4.7. Let T be any theory, and let X : ModpT q Ñ Set be a ∆-functor. Then X
preserves filtered colimits of models: for any model N , if N can be written as the filtered
colimit N » lim

ÝÑ
Mi, then XpNq » lim

ÝÑ
XpMiq.

Proof. First, we’ll show that being a ∆-functor implies that elementary embeddings are sent
to injective functions:

Claim: Let f : M Ñ N be an elementary embedding. Then Xpfq : XpMq Ñ XpNq is
injective.

Proof of claim. By Scott’s lemma (see e.g. [1] for a proof), there is an ultrapower MU of
M and an elementary map g : N ÑMU such that the diagram

MU

M N

∆M

f

g

commutes. Since X was assumed to be a ∆-functor, the diagram

XpMqU X
`

MU
˘

XpMq XpNq

ΦpMq

Xp∆M q

Xpfq

∆XpMq

Xpgq

14



commutes. Since ∆XpMq : XpMq ãÑ XpMqU is injective and ΦpMq is a transition
isomorphism, Xp∆Mq is injective, and therefore the composite Xpgq˝Xpfq is injective.
Therefore, Xpfq was injective.

Claim: For any N |ù T , the collection of maps tXpfq
ˇ

ˇ f : M Ñ N, M countableu jointly
surject onto XpNq.

Proof of claim. Since N is covered by copies of countable models, we do know that tf
ˇ

ˇ f :
M Ñ N, M countableu jointly covers N .

Let I index the elementary embeddings from (representatives of isomorphism classes
of) all countable models to N . Let U be a non-principal ultrafilter on I which contains

the sets P~n
df
“ ti P I

ˇ

ˇ impfiq Q ~nu, which has the finite intersection property by the
downward Lowenheim-Skolem theorem.

Consider the map
ź

iÑU
Mi

rfisiÑU
Ñ NU .

The diagonal copy of N in NU is in the image of this map: if rnsiÑU P NU , then
ti P I

ˇ

ˇ Dmi s.t. fipmiq “ nu is in U , so rfisiÑU rmisiÑU “ rnsiÑU . Pulling back ∆NpNq
along rfisiÑU , we obtain a map η from N into

ś

iÑU Mi such that the diagram

NU

N
ś

iÑU Mi

∆N

η

rfisiÑU

commutes.

Now apply X, obtaining the commutative diagram (it is easy to check that the extra
subdiagrams involving Xpηq commute by ΦpNq and ΦpMiq being isomorphisms):

XpNq

X
`

NU
˘

XpNqU

X p
ś

iÑU Miq XpMqU .

Xp∆N q ∆XpNq

Xpηq

ΦpNq

XprfisiÑU q

ΦpMiq

rXpfiqsiÑU

In particular,
∆XpNq “ rXpfiqsiÑU ˝ ΦpMiq ˝Xpηq.

This implies that ∆XpNq is contained inside the image of rXpfiqsiÑU .

Now, suppose that the Xpfiq did not cover XpNq. That is, suppose that there exists
an x P XpNq such that x lies outside of the image of Xpfiq for every i P I. Then for

15



any rmisiÑU P
ś

iÑU Mi, fipmiq ‰ x for all i P I. Therefore, ∆XpNqpxq is not contained
in the image of rXpfiqsiÑU , a contradiction.

We conclude that tXpfq
ˇ

ˇ f : M Ñ Nu jointly surjects onto XpNq.

Claim: Present N as a filtered colimit of its countable submodels Mi. Then XpNq »
lim
ÝÑ

XpMiq.

Proof of claim. Our two previous claims show that we may view XpNq as the union
of the XpMiq’s. lim

ÝÑ
XpMiq can be canonically written as

`
Ů

iPI XpMiq
˘

{E

where px P XpMiqq „E py P XpMjqq if and only if x and y become the same element
in some XpMkq for Mk amalgamating Mi and Mj. It is easy to check that sending an
x P XpNq to the E-class of an arbitrary lift x1 P XpMiq (for a choice of some XpMiq

containing x1) gives a bijection

XpNq » lim
ÝÑ

XpMiq by x ÞÑ rx1sE,

compatible over the XpMiq’s.

So far, we have shown that X preserves filtered colimits of countable models. But every
model is a filtered colimit of countable models. Explicitly, if we have N “ lim

ÝÑ i
Ni where the

Ni are possible uncountable, we have that each Ni “ lim
ÝÑ j

N i
j , so that we have written N as

a filtered colimit of countable models N i
j :

N “ lim
ÝÑ i

lim
ÝÑ j

Nu
j “ lim

ÝÑpi,jq
N i
j

Then
XpNq » lim

ÝÑpi,jq
XpN i

jq » lim
ÝÑ i

lim
ÝÑ j

XpN i
jq » lim

ÝÑ i
XpNiq.

Theorem 4.8. Let T be ℵ0-categorical. A functor X : ModpT q Ñ Set is definable if and
only if there is a transition isomorphism Φ such that pX,Φq is a ∆-functor.

Proof. If X is definable, then its isomorphism to an evaluation functor ϕ pulls back ϕ’s
transition isomorphism Φ1 to a transition isomorphism Φ for X, and since pϕ,Φ1q was an
ultrafunctor pX,Φq is also (these are diagrammatic conditions on Φ1 and so are invariant
under conjugation by isomorphisms).

On the other hand, suppose that pX,Φq is a ∆-functor. AutpMq acts via X on XpMq, and
so XpMq splits up into AutpMq-orbits. For each representative x of these orbits, we know
from the remarks following 4.5 that there is a tuple ax PM which supports x, and the map
ax ÞÑ x induces an AutpMq-equivariant map from the orbit (type) of ax to the orbit of x.
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Therefore, each AutpMq-orbit of XpMq is a quotient of an AutpMq-orbit of M by some
AutpMq-invariant equivalence relation. Since M is ω-categorical, these equivalence relations
are definable and all types are isolated by formulas, so we can write:

XpMq »
ł

iPI

Mpϕipxiqq »
ğ

iPI

Mpϕipxiqq.

By the previous lemma 4.7 and the fact that colimits always commute with colimits and
definable functors always commute with filtered colimits of models, we conclude (writing
N “ lim

ÝÑ j
Mj):

XpNq » lim
ÝÑ
j

˜

ğ

iPI

ϕipMjq

¸

(1)

»
ğ

iPI

¨

˝lim
ÝÑ
j

ϕipMjq

˛

‚ (2)

»
ğ

iPI

¨

˝ϕiplim
ÝÑ
j

Mjq

˛

‚ (3)

»
ğ

iPI

ϕipNq. (4)

Now we will show that the I indexing the ϕi must be finite.

In the pre-ultrafunctor condition

X p
ś

U Miq
ś

U pXpMiqq

X p
ś

U Niq
ś

U pXpNiqq ,

Xp
ś

U fiq

ΦU,pMiq

ś

U Xpfiq

ΦU,pNiq

restricting our attention to just ultraproducts of automorphisms tells us that ΦpMiq : X p
ś

iÑUqMi Ñ
ś

iÑU XpMiq is a
ś

iÑU AutpMiq-equivariant bijection, and therefore induces a bijection on
the orbits of the action on either side.

Let U be some ultrafilter such that |IU | ą |I|. Then, at the countable model M , we have
the bijection:

X
`

MU˘ ΦpMq

» pXpMqqU .

Now, the left hand side is
Ů

iPI ϕi
`

MU
˘

. Each ϕi
`

MU
˘

is actually an AutpMqU -orbit, since
ϕipMq was an AutpMq-orbit. Therefore, the number of AutpMqU -orbits on the left hand
side is |I|.
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On the right hand side, we have p
Ů

iPI ϕipMqq
U . Two points rxisiÑU and ryisiÑU are AutpMqU -

conjugate if and only if there exists a P P U such that for all j P P , ϕxj “ ϕyj (where ϕxi
means which ϕk xi came from.) But, this is the same as saying rϕxj sjÑU “ rϕyj sjÑU . So the
number of orbits on the right hand side is |I|U .

Therefore, |IU | “ |I|, so I must be finite. Hence there is a formula ϕpxq such that XpNq »
ϕpNq for all N |ù T . Since for each N , this isomorphism XpNq » ϕpNq is induced via
filtered colimits by XpMq » ϕpMq, this is a natural isomorphism, so X is definable.

5 An ultraproduct coherence criterion for objects in

the classifying topos

In this section, we will prove, for objects B in the classifying topos E pT q of T—which is
a natural enlargement of DefpT q whose “models” are the same as T ’s, and whose objects
pick out a subcategory of evaluation functors ModpT q Ñ Set containing the image of ev :
DefpT q Ñ Set—that evB being a pre-ultrafunctor characterizes whether or not B P DefpT q.

We will see that this generalizes the theorem 4.8.

5.1 Preliminaries on the classifying topos

For the construction and standard facts about the classifying topos of a first-order (or gen-
erally, a coherent) theory, see e.g. Part D of [5] or Volume III of [2]. For our convenience we
will repeat the essentials we will need in the rest of this section.

Definition 5.1. The classifying topos of a first-order theory T is a topos E pT q equipped
with a fully faithful functor y : DefpT q Ñ E pT q which is also a model in the sense of 2.3
(the definition given there only involves the preservation of certain categorical properties,
so makes sense for functors into any topos instead of Set). E pT q additionally satisfies the
following universal property: for any other topos S and any model M : DefpT q Ñ S of

DefpT q in S , there exists a unique ĂM : E pT q Ñ S such that the diagram

E pT q

DefpT q S

ĂMy

M

commutes.

This characterizes E pT q up to equivalence. We call ĂM the inverse image functor asso-
ciated to the model M . We also call objects of E pT q which are, up to isomorphism, in the
image of y representable (echoing the standard construction of E pT q as a certain category
of sheaves on DefpT q.)
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As the definition indicates, the extension ĂM ofM from DefpT q to E pT q should be determined
by what M does on the objects of DefpT q. The following discussion is meant to make this

intuition explicit, and to give a formula for computing what ĂM is outside of the image of y
inside E pT q.

5.1.1 Computing the associated inverse image functor ĂM

Definition 5.2. (3.7.1 of [2]) Let F : A Ñ B and G : A Ñ C be functors. The left Kan
extension of G along F , if it exists, is a pair pK,αq where K : B Ñ C is a functor and
α : GÑ K˝F is a natural transformation satisfying the following universal property if pH, βq
is another pair with H : B Ñ C a functor and β : GÑ H ˝F a natural transformation, then
there exists a unique natural transformation γ : K Ñ H satisfying the equality pγF q˝α “ β,
as in the following diagram:

A B

C

G

F

H

K , γ : K
!
Ñ H.

We write LanF G for the left Kan extension of G along F . Right Kan extensions are defined
dually, and are written RanF G.

Before proceeding, we give two definitions around the category of points of a (contravariant)
functor.

Definition 5.3. Consider the diagram of functors
C D.

E
F G

The comma cat-

egory pF Ó Gq is given by:

Objects: pc, d, αq where c P C, d P D,α : F pcq Ñ Gpdq P E.

Morphisms: HompFÓGq ppc1, d1, α1q, pc2, d2, α2qq is defined to be the set

$

’

’

’

&

’

’

’

%

pβ1, β2q
ˇ

ˇ β1 : c1 Ñ c2, β2 : d1 Ñ d2, and

F pc1q F pc2q

Gpd1q Gpd2q

α1

F pβ1q

α2

Gpβ2q

commutes.

,

/

/

/

.

/

/

/

-

.

Definition 5.4. If F : C Ñ Set is a Set-valued functor on a locally small category C, the
category of (global) points of F , written

şcPC
F pcq, is the comma category p1 Ó F q.

Explicitly, it is given by:

Objects:
 

pc, xq
ˇ

ˇ c P C, x P F pCq
(

.
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Morphisms: HomşcPC F pcq ppc1, x1q, pc2, x2qq is defined to be the set

 

f
ˇ

ˇ f : c1 Ñ c2 and F pfqpx1q “ x2.
(

If F : Cop Ñ D is a contravariant functor, we write
ş

cPC
F pcq for the opposite of

şcPC
F pcq.

The category of points of a functor F : C Ñ D is equipped with a projection (forgetful)
functor π back to C.

Lemma 5.5. (3.7.2 of [2]) Consider two functors F : AÑ B and G : AÑ C with A small
and C cocomplete. Then the left Kan extension of G along F exists, and is given pointwise
by a colimit

pbÑ b1q ÞÑ lim
ÝÑ

ˆ
ż aPA

Bpa, bq
π
Ñ A

G
Ñ C

˙

Ñ lim
ÝÑ

ˆ
ż aPA

Bpa, b1q
π
Ñ A

G
Ñ C

˙

Lemma 5.6. (3.7.3 of [2]) Let F : A Ñ B be a full and faithful functor with A a small
category. Let C be a cocomplete category. Then for any functor A Ñ C, the canonical
natural transformation G

α
Ñ pLanF Gq ˝ F is an isomorphism (so that the inner triangle

from 5.2 “commutes”).

Corollary 5.7. Every model M : DefpT q Ñ Set extends uniquely along y DefpT q
y

ãÑ E pT q

to an inverse image functor ĂM , as in

E pT q

DefpT q Set

ĂMy

M

.

The extension to E pT q is given by a pointwise Kan extension, so that for any B P E pT q,
ĂMpBq can be computed as the colimit

lim
ÝÑ

ˆ
ż

APDefpT q

E pT qpA,Bq
π
Ñ DefpT q

M
Ñ Set

˙

.

5.1.2 Coherent and compact objects in the classifying topos

Now, thinking of DefpT q as a full subcategory of E pT q, we introduce some definitions which
categorically characterize the objects of E pT q which correspond to quotients of definable sets
by

Ž

-definable equivalence relations and definable sets.

Definition 5.8. An object A of a topos E is compact if every covering (jointly epimorphic)
family of maps tfi

ˇ

ˇ i P Iu of maps into A contains a finite subcover.

Definition 5.9. An object A of a topos E is stable if for every morphism f : B Ñ A where

B is compact, the domain K of the kernel relation K Ñ B
f
Ñ A is also compact.
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Definition 5.10. An object A of a topos E is coherent if it is both compact and stable.

Remark 5.11. In a coherent topos, the pretopos of coherent objects is not necessarily
closed under arbitrary finite colimits. This is because coequalizers are quotients by (at least)
transitive closures of certain relations, so if one has a relation R Ñ X whose transitive
closure is properly ind-definable, the coequalizer ypRq Ñ ypXq� Y will not be definable.

Lemma 5.12. (D3.3.7, [5]) An object B of the classifying topos E pT q of a first-order theory
T is representable (i.e. isomorphic to an object from DefpT q ãÑ E pT q) if and only if it is
coherent.

As we saw in 5.11, the prototypical example in a coherent topos of a compact non-coherent
object is the coequalizer of a definable relation R Ñ X on a definable set X with a properly
ind-definable transitive closure. Our aim in this section is to prove the lemma 5.16, which
says that this obstruction to coherence actually characterizes the compact non-coherent
objects in a coherent topos.

An important basic category-theoretic fact is the canonical coproduct-coequalizer decompo-
sition of colimits (whose proof can be found, for example, in [6]).

Fact 5.13. Let D be a subcategory of C a category with all colimits.

Then the colimit lim
ÝÑ
pDq of D is isomorphic to the coequalizer of the following diagram:

˜

ğ

fPD1

spfq

¸

F
Ñ
G

˜

ğ

dPD0

d

¸

where on each component spfq P D0 of the left hand side, F sends spfq to itself d “ spfq by
the identity map of d “ spfq, and on each spfq P D0 of the left hand side, G sends spfq to
tpfq by the map f .

We apply this fact to show the following:

Lemma 5.14. An object B of a coherent topos E pT q is compact if and only if every covering
of B whose domains are representables admits a finite subcover.

Proof. The implication “ñ” is immediate.

Conversely, suppose that tBi Ñ Bu is a covering of B. By the Kan extension colimit formula
and the coproduct-coequalizer decomposition of colimits, each Bi is covered by (possibly
infinitely many) representables. The collection of all these representables across all Bi form
a covering of representables of B. By assumption, this covering admits a finite subcovering.
Therefore, only finitely many of these Bi were needed since all these representable coverings
factored through some Bi.

We recount the following fact from [4], closely related to the lemma 5.16:

Fact 5.15. (Lemma 7.36 of [4]). Let E be a topos generated by compact objects. Let X be a
coherent object of E, and let R Ñ X be an equivalence relation with coequalizer R Ñ X � X.
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Then Y is coherent if and only if R is compact.

The lemma 5.16 is a sharpening of the fact 5.15: not only will we show that a compact
non-coherent object is the quotient of a coherent object by a non-compact congruence, but
we will explicitly describe the non-compact congruence as an infinite join of coherent objects.

Lemma 5.16. Let B P E pT q be a compact non-coherent object. Then B is the quotient of a
coherent object A by a non-compact equivalence relation E which is a join of infinitely many
coherent equivalence relations on A.

Proof. Write B as a colimit of a diagram D whose objects are representables Ai. By the
coproduct-coequalizer decomposition, B is a quotient of the coproduct

Ů

APD′
A and therefore

the maps Ai ãÑ
Ů

APD′
A

pB
Ñ B are a covering family for B. Since B is compact, finitely many

Ai, say A1, . . . , An suffice to cover B.

What we have said so far amounts to saying that B is a quotient of the coherent object
Ů

iďnAi, since the obvious map

˜

ğ

iďn

Ai

¸

i
ãÑ

˜

ğ

APD0

A

¸

pB
Ñ B

covers B.

It now remains to calculate the kernel relation K 1 of pB ˝ i and show that it is an infinite
union of coherent relations on

Ů

iďnAi.

We break the remainder of the proof into the following steps:

1. The kernel relation K 1 of pB ˝ i is the pullback of the kernel relation K of pB along the
inclusion

iˆ i :

˜

ğ

iďn

Ai

¸

ˆ

˜

ğ

iďn

Ai

¸

ãÑ

˜

ğ

APD0

A

¸

ˆ

˜

ğ

APD0

A

¸

and therefore in every model consists of those pairs pa1, a2q P K such that both a1 and
a2 are in

Ů

iďnAi.

2. Fix an arbitrary model. There is no harm in working with points and sets in a generic
model since by Deligne’s completeness theorem we can then lift our calculations to the
classifying topos.

Now, K is by definition the smallest equivalence relation containing “Db : F pbq “ a1

and Gpbq “ a2 ùñ a1 „K a2.” By how F and G are constructed, this means that
a „K a1 if and only if there are finitely many other points a1, . . . , an and maps linking
a to a1, each ai to ai`1, and an to a1, where the maps may point in either direction.

It follows that K 1 is finer than just the kernel relation of the coequalizer of the pullback
of F,G :

Ů

APD0
AÑ

Ů

APD0
A along the inclusion i, and is given by the following union:

K 1
“
ł

nPω

Rn
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where R0 is the diagonal copy of
Ů

iďnAi, R1 consists of those pairs pa1, a2q such that
there is some a10 in

Ů

APD0
A such that there is a map f in D1 that moves a1 to a10 or

vice-versa, and there is a map g in D1 that moves a10 to a2 or vice-versa, etc.

3. R1 is the infinite union
Ž

APD0
SA, where each SAk corresponds to the A containing a

particular witness ak “ a10 as above.

4. Each SAk looks like this:

ł

pf,f 1,g,g1q

 

pai, ajq P Ai ˆ Aj
ˇ

ˇ Dak P Ak
`

pai, akq P Γpfq _ Γpf 1q and paj, akq P Γpgq _ Γpg1q
˘(

,

where the 4-tuple of maps pf, f 1, g, g1q ranges over definable maps

DefpT qpAi, Akq ˆDefpT qpAk, Aiq ˆDefpT qpAj, Akq ˆDefpT qpAk, Ajq

and therefore each SAk is
Ž

-coherent.

Therefore, R1 is
Ž

-coherent.

5. Let us inductively assume that Rk is
Ž

-coherent as the union
Ž

iPI Ti. Then Rk`1 is
the following subset of Rk ˆR1:

Rk`1 “

$

&

%

pa, bq
ˇ

ˇ

ł

pTi,SAqPIˆD0

Dc s.t. pa, cq P Ti ^ pa, bq P SA

,

.

-

and is therefore also
Ž

-coherent.

We conclude that K 1 is
Ž

-coherent.

5.2 The coherence criterion

Theorem 5.17. Let E pT q be the classifying topos of a first-order theory. Let B be an object
of E pT q. The following are equivalent:

1. B is coherent.

2. evB : ModpT q Ñ Set is the underlying functor of a pre-ultrafunctor pevB,Φq such that,
if B is canonically the colimit of representables Ai, then each canonical map Ai Ñ B
induces an ultratransformation of the pre-ultrafunctors pevAi , idq Ñ pevB,Φq.

Proof. p1 ùñ 2q IfB is coherent, then it is representable and pevB, idq is a pre-ultrafunctor,,
and since y : DefpT q Ñ E pT q is full and faithful, every map Ai Ñ B corresponds to a
definable function, which induces an ultratransformation evpAiq Ñ evpBq.

(2 ùñ 1) First, we note that under the assumptions, evB’s transition isomorphism is
uniquely determined by the transition isomorphisms of the representables appearing
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in the Kan extension colimit formula for B: all diagrams of the form

evB p
ś

iÑU Miq
ś

iÑU evBpMiq

evA p
ś

iÑU Miq
ś

iÑU evApMiq

evA1

ś

iÑU evA1pMiq

ΦB
pMiq

ΦA
pMiq

ΦA
1

pMiq

commute, and since the Kan extension colimit formula is computed pointwise, the tran-
sition isomorphism ΦB

pMiq
is a unique comparison map from the colimit evB p

ś

iÑU Miq

of the evAp
ś

iÑU Miq’s into
ś

iÑU evBpMiq.

Now, knowing this, suppose B is not coherent. Then either B cannot be covered by
finitely many definables, or it can. If it can be covered by the finitely many definables
A1, . . . , An, then the associated map A1 \ ¨ ¨ ¨ \ An � B does not have a definable
kernel relation, and in fact by 5.16, the kernel relation is properly ind-definable.

In either case, we know what the transition isomorphism ΦB
pMiq

looks like. In the first
case, if B cannot be covered by finitely many definables, we still know from the Kan
extension colimit formula that it can be covered by infinitely many pAiqiPI . Fix a model
M and take a sequence paiqiPI such that for every Aj, cofinitely many ai are not in (the
image of) Aj (in B). Then for a non-principal ultrafilter U on I, raisiPU is not in any
of the (images of the) pMUqpAjq’s. Therefore, it is not in the image of the transition
isomorphism ΦB

pMq, a contradiction.

In the second case, if B looks like a definable set A quotiented by a properly ind-
definable equivalence relation R “

Ť

iPI Ri, then once again we know that the transition
isomorphism

˜

ź

iÑU
Mi

¸

pA{Rq Ñ
ź

iÑU
pMipA{Rqq

is the “obvious” one. Here’s what the “obvious” map is: since A is definable, we are
really comparing two equivalence relations on the same set. On the left hand side, we
have that raisiÑU „ rbisiÑU if and only if there exists some Rj such that p

ś

iÑU MiqpRjq

contains prais, rbisqiÑU . On the right hand side, we have that raisiÑU „ rbisiÑU if and
only if ai „R bi U -often. Since R is properly ind-definable, the equivalence relation on
the left is properly contained in the equivalence relation on the right. This containment
induces an obvious map between the quotients, and since the containment is proper,
the obvious map is not injective, and cannot be a bijection.

Now we use this result 5.17 to prove a stronger statement than 4.8. The difference is that
in the original statement of 4.8, we only concluded that X was definable, without saying
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anything about the transition isomorphism Φ which allowed us to view pX,Φq as a ∆-
functor. In fact, we can show that pX,Φq is isomorphic to evϕpxq, and must therefore be an
ultrafunctor.

Corollary 5.18. Let T be ℵ0-categorical. Let pX,Φq be a pre-ultrafunctor. Then the un-
derlying functor X is definable if and only if for some ϕpxq P T , pX,Φq is isomorphic as a
pre-ultrafunctor to evϕpxq.

Proof. By applying the lemma 4.7 that ∆-functors preserve filtered colimits and arguing as
in the proof of 4.8, we conclude that X is isomorphic to a possibly infinite disjoint union of
representables

Ů

iPI Ai. In this way, X is canonically the colimit of the representables Ai. It
remains to verify the rest of item ??, i.e. the canonical inclusions Ak ãÑ

Ů

iPI Ai » X induce
ultratransformations.

Before proceeding, we reduce the problem of verifying this for all ultraproducts to just verify-
ing this for all ultrapowers. This is because, in general, every ultraproduct is a filtered colimit
of ultraproducts of countable models: for every rxisiÑU in some ultraproduct

ś

iÑU Ni, take

a countable elementary model Mi
fi
ãÑ Ni which contains xi; then there is an embedding

ś

iÑU fi :
ś

iÑU Mi ãÑ
ś

iÑU Ni, and the collection of all such embeddings covers
ś

iÑU Ni.
Since T is ℵ0-categorical, an ultraproduct of countable models is just an ultrapower of the
unique countable model.

So, it remains to check that the diagram

X
`

MU
˘

XpMqU

A
`

MU
˘

ΦpMq

ι
MU

ś

iÑU ιi

commutes. Each component ιN of the ultratransformation is determined by filtered colimits
of the countable model M , with ιM determined by sending the support ax P ApMq to x.
Since ∆M : M Ñ MU is part of the filtered diagram of countable submodels of MU , ιMU of
∆Mpaxq “ Xp∆Mqpxq, and since pX,Φq was a ∆-functor, ΦpMq ˝Xp∆Mqpxq “ ∆XpMqpxq.

On the other hand,
ź

iÑU
ιi p∆paxqq “ rιMpaxqsiÑU “ ∆XpMqpxq.

So the diagram commutes, and now we are done by the direction ?? ùñ ?? of the theorem.

6 Counterexamples in the non-ℵ0-categorical case

In this section, we will show that the (strengthened) conclusion of the main theorem 5.18
fails when the assumption that T is ℵ0-categorical is removed. In fact, we will work with
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the simplest non-ℵ0-categorical theory—the theory of an infinite set, expanded by countably
many distinct constants—and construct an example of a pre-ultrafunctor which is not a
∆-functor, and an example of a ∆-functor which fails to preserve the generalized diagonal
embeddings 3.15.

For the rest of this section, T will mean the theory of an infinite set with countable many
distinct constants tciuiPω. In a single variable, T has a unique non-isolated type ppxq, whose
realizations are those elements which are not any constants.

Definition 6.1. The underlying functor X for the pre-ultrafunctors we will construct will
be given on the objects of ModpT q by:

XpMq
df
“ ppMq Y

 

cMk
ˇ

ˇ k is even
(

.

On elementary embeddings f : M Ñ N , we set Xpfq to just be the restriction of f to XpMq.

There is an obvious map which compares
ś

iÑU XpMiq with X p
ś

iÑU Miq, namely the inclu-
sion of the former in the latter. However, by 2.9, this cannot be an isomorphism. To complete
the construction of the counterexamples, it remains to construct transition isomorphisms for
X.

For our convenience, we record an analysis of the automorphisms of the functor X which
will be useful in the construction of the exotic ∆-functor 6.1.

Lemma 6.2. Any automorphism η : X Ñ X of X satisfies the following property: for every
M |ù T , ηM : XpMq Ñ XpMq permutes the constants and fixes the nonconstants.

Proof. Fix an arbitrary model M , let ∆M : M Ñ MU be the diagonal embedding into
some ultrapower MU , and consider the naturality diagram which must be satisfied by the
components tηMuMPModpT q of η:

M X pMq X pMq

MU X
`

MU
˘

X
`

MU
˘

∆M Xp∆M q

ηM

Xp∆M q

η
MU

Suppose ηM sends a constant c to a nonconstant ηMpcq. Then the commutativity of the
naturality diagram tells us ηMU sends Xp∆Mqpcq “ ∆Mpcq to Xp∆MqpηMpcqq “ ∆MpηMpcqq.
However, any injection M Ñ MU which identifies constants with constants and sends non-
constants to nonconstants is an elementary embedding, and we can certainly find an embed-
ding f : M Ñ MU which does not send the nonconstant ηMpcq to ∆MpηMpcqq. Then, since
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elementary embeddings fix constants, the naturality diagram

M X pMq X pMq

MU X
`

MU
˘

X
`

MU
˘

f Xpfq

ηM

Xpfq

η
MU

would not commute. So, ηM must send constants to constants. Since η is an isomorphism
and hence invertible, ηM cannot send nonconstants to constants either.

Now suppose that ηM does not fix the nonconstants, so that for some nonconstant d, d ‰
ηMpdq, with ηMpdq a nonconstant. Consider again the naturality diagram for ∆M : M ÑMU :

M X pMq X pMq

MU X
`

MU
˘

X
`

MU
˘

∆M Xp∆M q

ηM

Xp∆M q

η
MU

This tells us that ηMU p∆Mpdqq “ ∆MpηMpdqq.

Let d1 stand for ∆MpηMpdqq, and let e be another nonconstant in MU , distinct from ∆Mpdq
and d1. Since d1 and e are nonconstants, we can find an automorphism σ : MU ÑMU which
fixes ∆Mpdq but which moves d1 to e. Then the naturality diagram for σ

MU X
`

MU
˘

X
`

MU
˘

MU X
`

MU
˘

X
`

MU
˘

σ Xpσq

η
MU

Xpσq

η
MU

tells us that

σ ˝ ηMU p∆Mpdqq “ ηMU ˝ σp∆Mpdqq

“ σpd1q “ ηUMp∆Mpdqq

“ e “ d1,

a contradiction. Therefore, ηM fixes the nonconstants.

Finally, we remark that any permutation of the constants can be realized in an automorphism
η : X Ñ X, and in fact AutpXq » Sympωq.
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6.1 The exotic ∆-functor

Now we will construct a transition isomorphism Φ for X such that pX,Φq is a ∆-functor
which is not an ultrafunctor (and, in fact, which fails to preserve the generalized diagonal
embeddings 3.15).

Fix I and a non-principal ultrafilter U . Let pMiqiPI be an I-indexed sequence of models.
Consider X p

ś

iÑU Miq, in which we can canonically identify
ś

iÑU XpMiq as a subset.

Definition 6.3. Let ApMiq be the complement of
ś

iÑU XpMiq inside X p
ś

iÑU Miq. ApMiq

consists of those elements rxisiÑU of
ś

iÑU Mi which:

1. realize the non-isolated type ppxq, i.e. are not constants, and

2. such that any representative sequence pxiqiÑU is U -often an odd constant (equivalently,
can be represented by a sequence made up entirely of odd constants).

Let BpMiq be the subset of
ś

iÑU XpMiq which consists of those elements rxisiÑU of
ś

iÑU
which:

1. realize the non-isolated type ppxq, i.e. are not constants, and

2. such that any representative sequence pxiqiÑU is U -often an even constant (equivalently,
can be represented by a sequence made up entirely of even constants).

Finally, let CpMiq be the complement of BpMiq inside
ś

iÑU XpMiq.

Note that CpMiq consists precisely of those elements of X p
ś

iÑU Miq which are either con-
stants or which are nonconstants rxisiÑU for which any representative sequence pxiqiÑU is
U -often a nonconstant.

Since elementary embeddings preserve the property of a tuple being constant or nonconstant,
for any sequence of elementary embeddings pfi : Mi Ñ NiqiÑU , we have that rfisiÑU restricts
to a map CpMiq Ñ CpNiq, and furthermore because elementary embeddings fix constants,
rfisiÑU restricts to bijections ApMiq Ñ ApNiq and BpMiq Ñ BpNiq.

Now, we have disjoint unions

X

˜

ź

iÑU
Mi

¸

“ ApMiq \BpMiq \ CpMiq and
ź

iÑU
XpMiq “ BpMiq \ CpMiq,

and our task is to find a transition isomorphism ΦpMiq : ApMiq\BpMiq\CpMiq
„
ÝÑ BpMiq\CpMiq.

We define ΦpMiq to be the identity on CpMiq. It remains to specify a bijection σ : ApMiq \

BpMiq » BpMiq. Since any such σ only involves identifying certain ultraproducts of constants
with other ultraproducts of constants, then after fixing a σ we can use σ to define ΦpNiq for
arbitrary I-indexed sequences of models pNiq. With this setup, we will show that any choice
of σ works.

While in general, transition isomorphisms depend on the three pieces of information I,U and
pMiq, we have constructed candidate transition isomorphisms by making a choice σ which
only depends on I and U , so we make this explicit by writing σI,U .
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Now, fix σI,U and let pMi
fi
Ñ NiqiPI be an I-indexed sequence of elementary embeddings, and

consider the pre-ultrafunctor diagram

X p
ś

iÑU Miq
ś

iÑU XpMiq

X p
ś

iÑU Niq
ś

iÑU XpNiq.

ΦpMiq

XprfisiÑU q rXpfiqsiÑU

ΦpNiq

To show it commutes, consider an arbitrary element rxisiÑU of the top left cornerX p
ś

iÑU Miq.
There are three cases:

1. rxisiÑU is in CMi
. Recall that ΦpMiq and ΦpNiq were defined to be the identities on

CpMiq, CNiq, and that rfisiÑU restricts to a map CpMiq Ñ CpNiq. Chasing rxisiÑU through
the diagram, we get

rxisiÑU rxisiÑU

rfixisiÑU rfixisiÑU .

2. rxisiÑU is in ApMiq. Recall that rfisiÑU restricts to bijections ApMiq Ñ ApNiq and BpMiq Ñ

BpNiq. Chasing rxisiÑU through the diagram, we get

rxisiÑU rσI,UxisiÑU

rxisiÑU rσI,UxisiÑU .

3. rxisiÑU is in BpMiq. Recall that rfisiÑU restricts to bijections ApMiq Ñ ApNiq and BpMiq Ñ

BpNiq. Chasing rxisiÑU through the diagram, we get

rxisiÑU rσI,UxisiÑU

rxisiÑU rσI,UxisiÑU .

Therefore, after making choices of bijections σI,U for every I and U , we obtain a transition
isomorphism Φ such that pX,Φq is a pre-ultrafunctor.

pX,Φq is also a ∆-functor: for any ultrapower MU , recall that the subset CpMiq 6.3 of X
`

MU
˘

contains all those elements which are constants or nonconstants that are ultraproducts of
nonconstants. In particular, if a PM , then ∆Mpaq “ rasiÑU is a constant if a is a constant or
a nonconstant which is an ultraproduct of nonconstants if a is a nonconstant, so the image of
∆XpMq is contained inside CpMiq Ď XpMqU . Xp∆Mq is just the restriction of ∆M to XpMq,
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so the image of Xp∆Mq also lies in CpMq and agrees with the image of ∆XpMq. This means
in the below diagram, the upper-left and lower-left triangles commute:

X
`

MU
˘

XpMq CpMq

XpMqU .

ΦpMq

∆XpMq

Xp∆M q

Furthermore, ΦpMq was defined to be the identity on CpMq, so the curved subdiagram on the
right commutes. Therefore, the entire diagram commutes; in particular, the outer triangle
from the definition 3.8 of a ∆-functor commutes, so pX,Φq is a ∆-functor.

The theory T is countable, and by strong conceptual completeness there as many isomor-
phism classes of ultrafunctors as there are definable sets of T . But for any I and U , any
choice of a bijection σI,U worked. We will show that there are at least uncountably many
isomorphism classes of ∆-functors pX,Φq that arise from our construction. This will imply
that there is some choice of Φ such that pX,Φq is not an ultrafunctor.

Let I now be countable, and let Φ and Φ1 be two different transition isomorphisms which
arise from making the choices of σI,U and σ1I,U during our construction. An isomorphism of
pre-ultrafunctors pX,Φq Ñ pX,Φ1q is an automorphism η : X Ñ X such that, additionally,
all diagrams of the form

X p
ś

iÑU Miq
ś

iÑU XpMiq

X p
ś

iÑU Miq
ś

iÑU XpMiq

ηś
iÑU Mi

Φ

ś

iÑU ηMi

Φ1

commute.

By our earlier analysis 6.2 of the automorphisms of X, it is easy to see that when restricted
to CpMiq, the above diagram commutes.

However, if we restrict to ApMiq \BpMiq, then chasing an element around the diagram

ApMiq \BpMiq BpMiq

ApMiq \BpMiq BpMiq

σI,U

ηś
iÑU Mi

ś

iÑU ηMi

σ1
I,U
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yields the tentative equality

rxisiÑU σI,UprxisiÑU

rxisiÑU σ1I,Uprxisq
?
“
ś

iÑU ηMi
pσI,U prxisiÑUqq

so we see that if the transition isomorphisms Φ and Φ1 induced by σI,U and σ1I,U are iso-
morphic, then there is an automorphism η : X Ñ X such that

ś

iÑU ηMi
˝ σI,U “ σ1I,U .

Therefore, defining G to consist of all ultraproducts
ś

iÑU ηpMiq admissible in the above di-
agram (so only those which restrict to a permutation on BpMiq), the number of isomorphism
classes among the pX,Φq is bounded from below by the number of orbits of the action by
composition

G ñ Bijections
`

ApMiq \BpMiq, BpMiq

˘

.

However, G can be identified with a subgroup of SympωqU . Since I was countable, SympωqU

has size ď c the size of the continuum.

On the other hand, the set on which G acts has the same cardinality as | Sym
`

BpMiq

˘

| ě 2c.

Therefore, this action has uncountably many orbits, and so there are uncountably many
isomorphism classes of pX,Φq arising from our construction. So, one of them cannot be an
ultrafunctor.

We can also see that Φ can be chosen to violate a generalized diagonal embedding 3.15. Fix
indexing sets I and J such that |I| ą |J |, a surjection g : I � J , and U an ultrafilter on I
with V its pushforward g˚U . Let pMjqjPJ be a J-indexed sequence of models.

Then the associated generalized diagonal embedding ∆g :
ś

jÑV Mj Ñ
ś

iÑUV Mgpiq induces,
informally speaking, a relationship between ultraproducts computed with respect to different
indexing sets and ultrafilters: for it to be preserved, the diagram

X
´

ś

jÑV Mj

¯

X
`
ś

iÑU Mgpiq

˘

ś

jÑV XpMjq
ś

iÑU XpMgpiqq

ΦpMjq

Xp∆gq

ΦpMgpiqq

∆Xpgq

must commute, for all choices of pMjq. However, our construction of Φ involved a speci-
fication of ΦpMjq based on a choice of σJ,V which is independent of the choice of σ1I,U used
to specify ΦpMgpiqq

. To make this concrete, if for a given Φ and pMjq the diagram above
happens to commute, then for any a P ApMjq in the upper-left corner which gets sent to some
b P BpMgpiqq

in the lower-right corner, we can change our choice of ΦpMjq so that ∆Xpgq ˝ΦpMjq

sends a to a different b1 ‰ b while keeping the rest of Φ the same, with the modified transition
isomorphism Φ1 still making pX,Φ1q a ∆-functor.
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6.2 The exotic pre-ultrafunctor

In the previous section, the transition isomorphisms Φ making pX,Φq a ∆-functor were
constructed to be the identity on CpMq, and hence also restricted to the identity on the
image of diagonal embeddings ∆M : M ÑMU .

In general, CpMiq splits into a disjoint union of even constants and nonconstants which are
ultraproducts of nonconstants of Mi:

CpMiq “ Cc
pMiq

\ Cnc
pMiq

.

We can easily modify the construction of the transition isomorphism to not preserve the
diagonal map, by requiring that Φ restricts to the identity only on Cnc

pMiq
, while on Cc

pMiq
, we

now require that Φ restricts to any permutation CpMiq Ñ CpMiq, while keeping the rest of the
construction the same.

Now we verify the pre-ultrafunctor condition. When we verified the pre-ultrafunctor condi-
tion during the construction of the exotic Delta-functor, we had three cases 6.1, according
to whether an element rxisiÑU P X p

ś

iÑU Miq was in ApMiq, BpMiq or CpMiq. With the new
definition, the verification of the first two cases remains the same, but the case of CpMiq

splits into the two case of whether rxisiÑU P CpMiq is a constant or nonconstant. If rxisiÑU
is a nonconstant, then since Φ still acts as the identity on rxisiÑU , the diagram commutes.
If rxisiÑU is a constant, then if Φ restricts to a nontrivial permutation of CpMiq, then the
diagram commutes because elementary embeddings preserve constants.

However, when Φ restricts to a nontrivial permutation on the even constants, the diagonal
embedding ∆M : M Ñ MU is not preserved, i.e. the triangle diagram in 3.8 does not
commute. For any even constant c in XpMq which is not fixed by Φ (and identifying XpMqU

as a subset of X
`

MU
˘

, and this as a subset of MU , Xp∆Mqpcq “ ∆XpMqpcq “ ∆Mpcq, but
Φp∆XpMqpcqq ‰ ∆Mpcq.

References

[1] J. Bell and A. Slomson, Models and Ultraproducts: An Introduction, Dover Books
on Mathematics Series, Dover Publications, 2006.

[2] F. Borceux, Handbook of Categorical Algebra, Cambridge University Press, 1994.

[3] C. Chang and H. Keisler, Model Theory, Studies in Logic and the Foundations of
Mathematics, Elsevier Science, 1990.

[4] P. Johnstone, Topos theory, Academic Press, 1977.

[5] , Sketches of an Elephant: A Topos Theory Compendium, Oxford Logic Guides,
2002.

[6] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathe-
matics, Springer New York, 1998.

32



[7] M. Makkai, Stone duality for first-order logic, Annals of Pure and Applied Logic, 40
(1988), pp. 167–215.

33


	Introduction
	Preliminaries
	Strong conceptual completeness
	Pre-ultrafunctors
	Ultramorphisms
	Stating strong conceptual completeness

	Strong conceptual completeness for 0-categorical theories
	Preliminaries on 0-categorical theories
	Diagonal embeddings and the finite support property

	An ultraproduct coherence criterion for objects in the classifying topos
	Preliminaries on the classifying topos
	Computing the associated inverse image functor 
	Coherent and compact objects in the classifying topos

	The coherence criterion

	Counterexamples in the non-0-categorical case
	The exotic -functor
	The exotic pre-ultrafunctor


