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1 Lecture One

We begin with a brief overview of some of the topics to be covered in this summer
school.

Let N ∈ Z≥1 be an integer and χ :
(
Z/NZ

)∗ → C× = GL1(C) a Dirichlet charac-
ter modulo N , i.e., a group homomorphism. Attached to χ is a Galois representation
ρχ of the absolute Galois group

ρχ : Gal(Q/Q)→ GL1(C),

arising from the universal property of quotients; specifically, we take the unique lift
χ̄ ∈ Gal(Q/Q) which equals the composition of χ with the surjection Gal(Q/Q) →
Gal
(
Q(ζN)/Q

)
=
(
Z/NZ

)∗
, where ζN is a primitive Nth root of unity, the isomor-

phism given by
n ∈

(
Z/NZ

)× 7−→ (
ζN 7→ ζnN

)
.

In our notation, = will denote a canonical isomorphism.
In particular, suppose f is a cuspidal modular form for GL2 which is a simulta-

neous eigenvector for the Hecke operators Tp; we will write

Tpf = λpf, λp ∈ C.

It happens that the subfield Ef of C generated by {λp : p prime} is a number field.
If ` ∈ Z is prime and λ|` is a prime of Ef , then (following a suggestion of Serre)

Deligne was able to prove a two-dimensional analogue of the above; namely, the
construction of the map

ρf : Gal
(
Q/Q

)
→ GL2

(
Ef,λ

)
,

where Ef,λ is the localization of Ef at λ.
The representation ρf is “attached to f” in some way. More precisely: if f

has level N ≥ 1, weight k ≥ 1, and (Dirichlet) character χ, then ρf is unramified
away from N`. Furthermore, if p is prime, p - N`, then ρf (Frobp) has characteristic
polynomial

X2 − λpX + pk−1χ(p).

The Chebotarev density theorem implies that there exists at most one semisimple
ρf with this property.

For k ≥ 2, Deligne constructed ρf using étale cohomology with non-trivial coef-
ficients; for k = 1, Deligne and Serre used another method.

Certain questions arise from Deligne’s construction. For instance, if p|N`, what
does ρf look like locally at p? We break into two cases:
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1. Suppose p|N, p 6= `. Then the answer comes from the so-called local Lang-
lands correspondence. This will be explained (hopefully) later this week.

2. Suppose p = `; then we will use the p-adic local Langlands correspondence.

We consider now an easier variant on the same theme. Instead of asking for the
representation ρf itself, we might ask for its reduction modulo `, i.e. the map

ρf : Gal
(
Q/Q

)
→ GL2(F`),

recalling that F` is the residue field of Ef,λ at λ. It happens that ρf lies in the
`-torsion of an appropriate abelian variety.

We might reasonably ask the question: are ρχ and ρf special cases of a more
general phenomenon?

Theorem 1.1. (Harris, Lan, Taylor, Thorne, 2013; Scholze, 2017?)
Let E be a totally real or CM number field, π a cuspidal, automorphic
representation of GLn(AE). Assume that π∞ is “cohomological” (to be
thought of for now as a strong “algebraicity” assumption); then there
exists some representation

ρπ : Gal(E/E)→ GLn(Q`)

attached to π in some canonical way.

This theorem is analogous to giving the characteristic polynomial of ρf (Frobp);
more details on all these objects will follow in the coming lectures.

The constructions we have seen so far follow a general theme: namely, to associate
to a given algebraic or analytic object (i.e. χ, f, π) a representation of a Galois group
(i.e. ρχ, ρf , ρπ). We might ask: is it possible to classify the image? That is, given a
representation ρ of some Galois group in GLn, does there exist some representation
ρf (say) arising from the algebraic/analytic object, which is isomorphic to ρ?

We will begin by considering the one-dimensional case. Say K/Q is a finite Galois
extension with one-dimensional representation

ρ : Gal(K/Q)→ GL1(C).

When is this ρ isomorphic to some ρχ, for χ a Dirichlet character?
By the universal property of quotients, we may assume that ρ is injective; oth-

erwise we replace K by an appropriate subfield. Because the image of ρ lies in
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an abelian group, it follows that Gal(K/Q) is itself abelian – we say that K is an
abelian extension of Q. If

χ : Gal(Q/Q) = Gal
(
Q(ζN)/Q

)
→ C×

is the character above and ρχ as before, then ρχ gives rise to an injection

Gal(L/Q) ↪→ C×,

for some subfield L of Q(ζN).
Our question now becomes: If K is a number field which is an abelian Galois

extension of Q, does there exist a positive integer N such that K ⊆ Q(ζN)?

Theorem 1.2. (Kronecker-Weber theorem; “explicit case of global class
field theory”): The answer to the above question is “yes.”

Thus: for all continuous ρ : Gal
(
Q/Q

)
→ GL1(C), there exists a character

χ :
(
Z/NZ

)× → C× such that ρ ∼= ρχ.
Moving to the two-dimensional case: suppose f is a cuspidal modular eigenform

as before, then the associated representation ρf : Gal(Q/Q) → GL2(Q`) has the
following properties:

1. ρf is absolutely irreducible.

2. ρf is odd, i.e., det(z 7→ z̄) = −1.

3. ρf is unramified away from a finite set of primes, and is potentially semi-stable
(a p-adic Hodge-theoretic condition) at `.

The third property is sometimes abbreviated by saying ρf is geometric, but we
probably won’t use this terminology.

In the early 1990s, Fontaine and Mazur asked the converse question: If ρ :
Gal(Q/Q) → GL2(Ql) satisfies the conditions 1., 2., and 3., then is ρ ∼= ρf for
some f?

The answer to this question is now basically known by the work of Kisin and
Emerton, but is still being consolidated and published; see “The Fontaine-Mazur
conjecture for GL2” and “Local-global compatibility in the p-adic Langlands program
for GL2,” both of which written circa 2012.

In the general case, we ask: If ρ : Gal(E/E)→ GLn(Ql) satisfies certain assump-
tions, is it the case that ρ ∼= ρπ as in theorem 1.2?

This is proven by Barnet-Lamb, Gee, Geraghty, and Taylor for many cases, but
not generally.
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Starting with the next talk, we will begin to include far more details and compu-
tations.
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2 Lecture Two

The aim of this course is to give us a feeling for the statements of the theorems that
we just saw.

We’ll see precise definitions and examples, and learn to work with these objects.
And maybe we’ll work with groups other than GLn.

2.1 Part 1: the local Langlands Correspondence

(The first lecture was global.)
The local Langlands correspondence for GLn /K is, vaguely speaking, a canonical

bijection between

1. Certain typically infinite-dimensional irreducible C-representations of GLn(K),
and

2. certain n-dimensional complex representations of a group related to Gal(K/K).

If n = 1, this is the so-called “local class field theory”.

Remark. Local class field theory has sort of a funny history. Most of the results in
global class field theory were proved in the early 20th century, before p-adic numbers
had really been discovered. Various local results were deduced from the global results,
but then people realized that it was more natural to prove the local statements first
and then deduce the global statements.

When n > 1, this is the local Langlands conjectures for GLn /K, which are a
2000 theorem of Harris and Taylor (proofs are global).

Now we’ll start being rigorous.

2.1.1 Infinite Galois groups

Let’s remind ourselves of what happens in the finite case. Let K be any field, and
say L/K is a finite extension. We say that L/K is Galois if L/K is normal and
separable.

Then Gal(L/K) is the group of field automorphisms of L fixing K pointwise,
with #Gal(L/K) = dimK(L) (i.e. the dimension of L as a K-vector space).

Furthermore, there is an inclusion-reversing correspondence (the Galois corre-
spondence) between subgroups H ⊆ Gal(L/K) and intermediate extensions M,K ⊆
M ⊆ L.
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Alright, now say that K is a field and L/K is an algebraic extension of possibly
infinite degree. We’re going to convince ourselves that

Gal(L/K) ' lim
←−

Gal(M/K),

where M runs over the finite Galois extensions of K in L.
We say that L/K is Galois if it’s normal and separable. Set Gal(L/K) to be the

field automorphisms ϕ : L→ L such that φ fixes K pointwise.
The key observation about the (possibly infinite) Galois group is that if ϕ is in

Gal(L/K), then ϕ is determined by its values on the elements of L, each of which
lies in a finite extension of K.

That is, if λ ∈ L, then there exists M,L ⊇ M ⊇ K such that M/K is finite and
Galois and λ ∈M .

In particular, there is a canonical quotient map Gal(L/K) → Gal(M/K) and
ϕ(λ) is determined by the image of ϕ in Gal(M/K).

In particular, ϕ is determined by ϕ|M for all M : L ⊇M ⊇ K, where M is finite
and Galois over K.

Therefore, this induces an embedding

Gal(L/K) ↪→
∏

L⊇M⊇K
M/K finite, Galois

Gal(M/K).

The product topology induces a nontrivial subspace topology on Gal(L/K) (the
Krull topology.) (This is really just the topology of pointwise convergence.)

Exercise 1. Check thatGal(L/K) is a closed subspace of this product.

Of course, no recap of Galois theory is complete without mentioning the fun-
damental theorem of Galois theory: there is an inclusion-reversing bijective corre-
spondence between the closed subgroups of Gal(L/K) and the intermediate fields
L ⊇M ⊇ K.

Example 1. Here are some examples.

1. Let K = Q and let L =
⋃
n≥1 Q(ζpn), where ζpn is e2πi/pn , p prime. Set

Ln = Q(ζpn). We know that Gal(Ln/Q) is (Z/pnZ)×, and so

Gal(L/Q) ↪→
∏
n≥1

(Z/pnZ)× ,
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sending ϕ 7→ (ϕn)n≥1. There is an infinite tower

Q ⊆ L1 ⊆ L2 ⊆ L3 ⊆ · · · ⊆ Ln ⊆ . . . ,

with
⋃
Li = L and each ϕn : Ln → Ln.

Hence, if we know ϕn, we know what ϕm is for all m ≤ n. More precisely, if
ϕ� (ϕn), and ϕn ∈ (Z/pnZ)×, then ϕm = ϕn modulo pm.

In particular, Gal(L/Q) = lim
←−

(Z/pnZ)× = Z×p , equipped with the subspace

topology from Zp
df
= lim
←−

Z/pnZ.

2. Let’s do an example closer to what we’ll be interested in: local fields. Well,
before we do local fields, let’s do a finite field.

Let K be finite, and let L = K. Say that #K = q. Then L is the union of the
unique qnth-order extensions of K.

Remark. Note that Fq ⊆ Fq2 , but Fq2 6⊆ Fq3 , simply by dimension + counting
elements of a finite-dimensional vector space over a finite field. How it works
is that this inclusion only happens if the smaller exponent divides the larger.

Let’s remind ourselves how Galois theory over finite fields works. Write Ln
df
=

Fqn . Ln/K is Galois over n and one checks that Gal(Ln/K) = Z/nZ where the
generator 1 on the right hand side goes to Frobq, which is a completely explicit
member of the Galois group of Ln/K.

So, we can send g ∈ Gal(K/L) to (gn) ∈
∏

Z/nZ.

(gn) is in the image of Gal(K/K), if and only if gn modulo m is gm for all m
dividing n.

Therefore, Gal(K/K) is lim
←−

Z/nZ = Ẑ =
∏

p Zp, the limit taken over the

inverse system of positive integers, ordered by divisibility.

3. Now, local fields. Let’s stick to the case where K/Qp is finite. Choose an
algebraic closure K over K. We want to understand Gal(K/K). This group
is only defined up to inner automorphism, i.e. equivalence in the 2-category
Grp.

(We will fail to do this, but we’ll get some scraps.)

So, Qp is the p-adic numbers, and Qp contains Zp the p-adic integers. There
is a valuation Qp → Z ∪ {∞} the normalized valation, where v(x) is just the
number of times p divides x, i.e. v(pnu) = n if u ∈ Z×p .
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K ⊇ OK the integers of K, where OK is a local ring, whose unique maximal
ideal is pK = (πK) principal.

Therefore, we have v : K× → Z with v(πK) = 1 and v(πnKu) = n, where
u ∈ O×K .1

Say that L/K is an algebraic extension (possibly infinite).

The valuation vK : K× → Z extends to L× → Q, and L ⊇ OL ⊇ pL, where
OL = {0} ∪ {λ ∈ L

∣∣ v(λ) ≥ 0}.
The residue field OL/pL = kL = algebraic extension of kK = OK/pK = a finite
field.

If L/K is Galois, then we get a map Gal(L/K) → Gal(kL/kK) and this is
surjective (and not injective in general).

Definition. We say that L/K is unramified if the natural map Gal(L/K) →
Gal(kL/kK) is an isomorphism.

Here is the set-up: K/Qp is finite, K ⊇ OK ⊇ pK = (πK).

Exercise 2. Show that the following are equivalent:

(a) pL = πKOL.

(b) vK(L×) = Z.

(c) L/K is unramified.

Exercise 3. Show that the compositum of two unramified exten-
sions of K is unramified.

Therefore, if L/K is algebraic, then there exists a unique maximal unramified
subextension, so an M where L ⊇ M ⊇ K, M/K unramified and maximal,
and Gal(M/K) = Gal(kM/kK) is cyclic or pro-cyclic.

1Reference: Serre’s Local Fields.
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3 Lecture Three

3.1 Inertia subgroup

Recall from last time: We had K/Qp a finite extension. Let L/K be an algebraic,
normal extension (hence Galois).

The Galois group Gal(L/K) surjects onto the Galois group Gal(kL/kK). We can
then define the inertia subgroup IL/K to be the kernel of the map Gal(L/K) →
Gal(kL/kK). Since kK is finite, we see that the quotient of Gal(L/K) by IL/K is
procyclic (topologically generated by one element).

To understand Gal(L/K), we wish to focus on IL/K .
(In theory we don’t lose much by pretending in our heads that L/K is a finite

extension.)
IL/K is a closed subgroup of Gal(L/K) since it is the preimage of a closed set

under a “sufficiently nice” map. By the fundamental theorem of Galois theory, IL/K
corresponds to a subextension M/K, which is the union of all unramified subexten-
sions K ′/K.

An interesting special case follows. When L = K, the maximal unramified subex-
tension of K (which we denote Knr) satisfies Gal(Knr/K) ∼= Gal(kK/kK) ∼= Ẑ canon-
ically; this is due to the fundamental theorem of Galois theory again.

Consider for example K = Qp; then we will find that

Knr =
⋃
m≥1
p-m

Qp(ζm).

Exercise 4. Is this true for general K?

Now we consider L/K Galois with finite inertia group IL/K . (For example, this
is true when L/K is finite.)

We know that IL/K is a normal subgroup of Gal(L/K). We will put a filtration
on IL/K as follows: if σ ∈ IL/K , we consider σ as a map L→ L.

Exercise 5. Check that σ(OL) = OL and σ(pL) = pL.

Because IL/K is finite, we in fact have pL principal. Consider the maximal un-
ramified subextension M ; we note that pM = πKOM (where pK = πKOK) because
M/K unramified. Then vL : L→ Z the discrete valuation satisfies vL = (#IL/K)vK
on K×.

Let πL be the appropriate uniformizer. If i ≥ 1, we define IL/K,i = {σ ∈ IL/K :
σ(πL)/πL ∈ 1 + piL}.
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Set IL/K,0 = IL/K .

Exercise 6. Check that each IL/K,i is a subgroup of IL/K and that each
is a normal subgroup of Gal(L/K).

Furthermore, if σ is not the identity, σ(πL)/πL 6= 1. Hence for i� 0 we see that
IL/K,i = {1}.

We note that IL/K/IL/K,1 ↪→ k×L via σ 7→ σ(πL)/πL. In particular, IL/K/IL/K,1 is
cyclic of order prime to p.

Exercise 7. If i ≥ 1, show that

IL/K,i/IL/K,i+1 ↪→ piL/p
i+1
L

via σ 7→ σ(πL)/πL − 1, as abelian groups. (Recall that piL/p
i+1
L is

isomorphic to the additive group of kL).

Exercise 8. In particular, if i ≥ 1, show that IL/K,i/IL/K,i+1
∼= (Z/pZ)ni

for some ni, so that its order is a power of p and each non-identity el-
ement has order p.

The upshot is that IL/K,1 is the unique Sylow p-subgroup of IL/K , with the quo-
tient IL/K/IL/K,1 cyclic of order prime to p. (In particular IL/K is a solvable group.)

We say that L/K is tamely ramified if IL/K,1 is trivial. (Unramified extensions
are tamely ramified.) Otherwise we say L/K is wildly ramified.

We’re really interested in the case L = K, in which case IL/K is not finite. The
“lower numbering” IL/K,i does not behave nicely with regard to extensions of L.

This means that if we have extensions L′/L/K with both L,L′ Galois over K and
IL′/K finite, we have a natural surjection IL′/K → IL/K , but IL′/K,i is not identified
with IL/K,i in general.

However, we can fix this! We introduce a new relabelling of the filtration.
Say we have L/K Galois and IL/K finite as before. Let gi = #IL/K,i. Then

g0 ≥ g1 ≥ . . . . Define φ : [0,∞)→ [0,∞) a piecewise linear and continuous function;
it is linear on each interval (i, i+1) with φ(0) = 0 and the slope on (i, i+1) is gi+1/g0.

Then eventually φ becomes linear with slope 1/g0. It is clearly a strictly increasing
bijection.

Now for any v ∈ R≥0, define IL/K,v = IL/K,dve where d·e is the ceiling function.
We can now define the upper numbering. For u ∈ R≥0, define IuL/K =

IL/K,φ−1(u).
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Proposition 1. If L′/L/K are all Galois extensions as usual and
IL′/K is finite, then the image of IuL′/K under the obvious map is exactly
IuL/K.

Proof. See Serre’s Local Fields or Cassels-Fröhlich (p.38).

The point is that the upper numbering extends to an infinite extension.

Theorem 3.1 (Hasse-Arf). If L/K is abelian, then the jump discon-
tinuities in the upper numbering IuL/K are at integers.

Now for any L/K Galois extension, we may define IuL/K by “gluing together”

IuM/K for M/K algebraic with IM/K finite.

3.1.1 Tamely ramified extensions

Recall that when IL/K is finite, we say L/K is tamely ramified with IL/K,1 is trivial -
equivalently, IL/K,ε = IδL/K = {1} for any ε, δ > 0. (Using IδL/K works to define tame

ramification for any Galois L/K.)
The usual story is true: the compositum of two tame extensions is tame. There-

fore we can talk about maximal tamely ramified subextension.
We now have the following general picture. Given L/K Galois, we have a maximal

unramified subextension K1 and a maximal tamely ramified subextension K2, with
K1 ⊂ K2 and L/K2 possibly wildly ramified with Gal(L/K2) a pro-p group.

Now consider L = K; we get K/Kt/Knr/K a tower of extensions (Kt is the
maximal tamely ramified extension). We now may ask: what is Kt?

If L/K is finite and Galois, consider the tower of extensions L/K2/K1/K as
before. The Galois group Gal(K2/K1) is IL/K/IL/K,1, which is cyclic of order prime
to p.

By Kummer theory (see article by Birch in Cassels-Fröhlich), Knr contains all
the mth roots of unity for m prime to p, so if Gal(K2/K

nr) ∼= Z/mZ for m prime to
p, then K2 is Knr( m

√
α) for some α ∈ Knr.

Exercise 9. Check that K2 = Knr( m
√
πK).

We can now check that

Kt =
⋃
m≥1
p-m

Knr( m
√
πK).
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We find that Gal(Knr( m
√
πK)/Knr) is canonically isomorphic to µm via σ 7→

σ( m
√
πK)/ m

√
πK .

Then Gal(Kt/Knr) ∼= lim←−µm where the projective limit is taken over m prime to
p. This is noncanonically isomorphic to lim←−Z/mZ for m prime to p, or

∏
` 6=p Z`.

So then we have a pro-p group Gal(K/Kt), a noncanonical isomorphism Gal(Kt/Knr) ∼=∏
6̀=p Z`, and canonically Gal(Knr/K) ∼= Ẑ.
Now we want to understand Gal(Kt/K), which we know as a semidirect product,

though we do not know yet how Ẑ acts on
∏

`6=p Z`. Let Frob be the canonical

generator of Gal(Knr/K) ∼= Gal(kKnr/kK) ∼= Ẑ (it is the #kK-power map on the
residue fields).

If we are able to lift Frob to Gal(Kt/K), then it acts by conjugation on the
normal subgroup Gal(Kt/Knr) (since Gal(Kt/Knr) is abelian), and we will be able
to describe Gal(Kt/K).

Recall Gal(Kt/Knr) is canonically isomorphic to lim←−µm(K).

Exercise 10. Check that the map induced by Frob is the q-power map
ζ 7→ ζq, where q = #kK.
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4 Lecture Four

We just saw an attempt to analyze the group Gal(K̄/K) via an explicit attack on
the inertia group. The obstacle is that determining the Sylow-p subgroup of the
inertia group is hard. Another approach would be to understand the abelianisation
of Gal(K̄/K).

Let K/Qp be finite. We recall the exact sequence

1→ IK̄/K → Gal(K̄/K)→ Ẑ→ 1.

We have Ẑ = 〈Frob〉 topologically, but it has no well-defined lift to Gal(K̄/K).
Frob ∈ Ẑ and we put

(Frob)Z = {. . . ,Frob−1, 1,Frob, . . .} = Z ⊆ Ẑ.

Definition. The Weil Group, WK is formally defined as

WK = {g ∈ Gal(K̄/K) : Im(g) ∈ Ẑ is in (Frob)Z = Z}.

Pictorially we have the following commutative diagram whose rows are exact:

1 IK̄/K WK (Frob)Z 1

1 IK̄/K Gal(K̄/K) Ẑ 1

The Weil group is a dense subgroup of the Galois group. We give WK a topology
which is not the subspace topology. We define the topology as follows: IK̄/K is
open in WK with the usual topology so WK/IK̄/K = Z with the discrete topology.
Consider the following diagram

WK Z

Gal(K̄/K) Ẑ

Since Z has discrete topology, Z→ Ẑ is continuous. Ẑ has profinite topology and the
map Gal(K̄/K)→ Ẑ is also continuous. WK is the pull-back of the Galois group in
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the category of topological groups. WK surjects onto Gal(L/K) for finite extensions
L/K; this follows from the observations that

Ẑ/nẐ ' Z/nZ and Z � Z/nZ.

Define for G a topological group, the subgroup Gc to be the topological closure of
the normal subgroup of G generated by ghg−1h−1 for g, h ∈ G. Then Gab = G/Gc is
the maximal abelian Hausdorff quotient of G.

Theorem 4.1. (Main theorem of Local Class Field Theory) Let K/Qp

be a finite extension. Then there is a canonical isomorphism (called
the Artin map)

rk : K
× → W ab

K .

(For details refer to Serre’s article in Cassels-Fröhlich). We now list out the properties
of this Artin map:

1. rK(OK) = Im(IK̄/K).

2. rK(1 + piK) = Im(I i
K̄/K

).

3. rK(πK) ∈ Frob−1 · Im(K̄/K).

Remark. If X, Y are two abelian groups and ϕ : X → Y is a canonical
isomorphism then ψ : X → Y defined by ψ(x) = ϕ(x)−1 is just as canonical.
So there are two canonical isomorphisms between K

×
and W ab

K . These are rK
and rK ◦ (x 7→ x−1). The way to tell them apart is by the last condition; the
one we use sends πK ∈ K

×
to the inverse of the Frob.

As per Deligne’s definition we call Frob−1 the geometric Frobenius and Frob
the arithmetic Frobenius.

4. If L/K is finite then Gal(K̄/L) ↪→ Gal(K̄/K). Thus there is a canonical
injection of the Weil groups. We have the following commutative diagram
(where we note that the bottom arrow need not be injective)

WL WK

W ab
L W ab

K
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5. The following diagram commutes:

L
×

W ab
L

K
×

W ab
K

NL/K

rL

rK

Since we know that K
×
↪→ L

×
there must be a map W ab

K → W ab
L . There exists

the Verlagerung/Transfer map: let H ≤ G of finite index. There exists

V : Gab → Hab; g 7→
∏
i

γigγ
−1
i

where {γi} is the set of coset representatives of H in G. Then we have the
following commutative diagram

L
×

W ab
L

K
×

W ab
K

rL

rK

Transfer

6. Local class field theory tells about cohomology groups. Let L/K be Galois and
finite, then WL is a normal subgroup of WK (of finite index) and WK/WL =
Gal(L/K). In fact, W c

L ≤ WL ≤ WK and W c
L is a characteristic subgroup and

hence normal in WK . We define

WL/K = WK/W
c
L

and this gives us the exact sequence

1→ L
×

= W ab
L ↪→ WL/K → Gal(L/K)→ 1.

This gives rise to an element of H2(Gal(L/K), L
×

) called αL/K such that

H2(Gal(L/K), L
×

) = 〈αL/K〉 is cyclic of order n = [L : K]. This element
is called the fundamental class.

Remark. There are lots of cohomology groups one can compute using the
fundamental class, using the cup product (for example).
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Upshot: We now understand Galois groups of maximal abelian extensions of K.

Exercise 11. Show that the compositum of two abelian extensions is
abelian, and therefore that there exists a maximal abelian extension
Kab ⊆ K̄. Show that Gal(Kab/K) = Gal(K̄/K)ab.

We have the following commutative diagram:

IKab/K Gal(Kab/K) Gal(Knr/K) = Ẑ

IKab/K W ab
K ' K

× Z

The isomorphism Gal(Kab/K) ' O×K × Ẑ is non-canonical, as it depends on the
choice of Frob.

17



5 Lecture Five

Today we will work towards the statement of the local Langlands conjecture. Vaguely
speaking, the local Langlands conjecture for GLn over K (where K/Qp is a finite
extension) is that there is a one-to-one correspondence between certain n-dimensional
representations of a particular Galois group, and representations of GLn(K).

Let us consider the first of these sets. The Galois group in which we are interested
is a “Weil-Deligne group” (related to the Weil group WK), and so we are motivated
to begin investigating representations of WK .

Recall the definition of WK . We have the following commutative diagram whose
rows are exact:

1 IK/K WK FrobZ 1

1 IK/K Gal(K/K) Ẑ 1

id

Now, let E be a field, and equip both E and GLn(E) (for some fixed n ≥ 1) with
the discrete topology. We consider what it means for a homomorphism of groups
ρ : WK → GLn(E) to be continuous: we have that ρ will be continuous if and only if
ker ρ is open in WK . Because IK/K is compact in WK and ρ is continuous, we know
that ρ(IK/K) is a compact subset of GLn(E), which is therefore finite.

Thus we can use the theory of lower numbering on ρ(IK/K): because IK/K =

Gal(K/Knr), we deduce the existence of a subextension Knr ⊆ L = L(ρ) ⊆ K such
that Gal(L/Knr) = ρ(IK/K). Thus

ρ(IK/K) = IL/K ⊇ IL/K,1 ⊇ · · ·

Now, define f(ρ) to be the conductor of ρ, i.e.

f(ρ) =
∞∑
i=0

1

[IL/K : IL/K,i]
dim(V/V IL/K,i),

where
ρ : WK → GLn(F ) = AutE(V ), V = En,

and V H is the set of points of V fixed by H for H ≤ Aut(V ).
Note that our sum is finite, as for i� 0 we know IL/K,i = 1 and so the dimension

of the quotients vanishes for large enough i.

18



Exercise 12. Show that f(ρ) = 0 if and only if ρ is unramified, if and
only if ρ(IK/K) = 1. Show that f(ρ) is an integer.

Note also that

f(ρ) = dim(V/V IL/K ) +
∑
i≥1

1

[IL/K : IL/K,i]
dim(V/V IL/K,i)

For example, recall the isomorphism rK : K× → W ab
K from before; this, together

with the surjection WK → W ab
K gives us another surjection WK → K×. In addition

to the normalized valuation vK : K× → Z, we also have the notion of a norm on K,
given by

‖λ‖ = εvK(λ),

where 0 < ε < 1. Two norms ‖ · ‖1, ‖ · ‖2 are called equivalent if ‖x‖1 < 1 if and
only if ‖x‖2 < 1 for every x ∈ L; with our norm, any different choice ε̃ will yield an
equivalent norm.

Now, if K is any field which is complete with respect to a non-trivial, non-
archimedean norm, we can build the theory of rigid geometry over K. For instance,
let K = C((t)) be the field of formal Laurent series in t over C, and let

v

( ∞∑
n=−m

ant
n

)
= −m,

if a−m 6= 0. We put a norm on K by fixing some ε, 0 < ε < 1 and putting ‖f‖ = εv(f).
Here, there is no real “canonical” choice of ε. In our situation, however, where K/Qp

is finite, a canonical choice of ε is given by ε = q−1, where q = |kK |.
Indeed, because kK is finite, we know that K is locally compact, and indeed a

compact open neighbourhood of the identity is given by OK ∼= Zdp (for some d ≥ 1).
As such, there exists an additive Haar measure µ on K. Because OK is compact,
we have that µ(OK) is finite, so we will scale µ so that µ(OK) = 1. Then what is
µ(pK)?

Recall that a Haar measure on a locally compact abelian group G is any
translation-invariant measure, and furthermore that all Haar measures on G are
proportional. Clearly

µ
(
X
∐

Y
)

= µ(X) + µ(Y )

if X, Y ⊆ G are compact; therefore, since

OK =
∐
λ∈kK

λ̃+ pK
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(where λ is any lift of λ to OK), we have µ(OK) = qµ(pK); thus µ(pK) = q−1.
Now, if a ∈ K×, then define ‖a‖ to be the factor by which multiplication by a

scales the Haar measure; for instance, if K = R, let X = [0, 1], µ(X) = 1 and choose
λ ∈ R×. Then

µ(λX) = µ
(
[0, λ]

)
= |λ|µ(X),

thus ‖λ‖ = |λ| (i.e. the usual absolute value).

Exercise 13. Compute the norm ‖z‖ for z ∈ C, using this method.
(Hint: for compact X with nonzero measure, we must have ‖λ‖ =
µ(λX)/µ(X)).

Back to the case of K a finite extension of Qp: we have our normalized valuation
v so that v(πK) = 1, we want ‖πK‖ to equal simply our choice of ε; does there exist
a canonical choice? Indeed, we have µ(OK) = 1, thus

‖πK‖ = µ(πKOK) = µ(pK) = q−1,

so we have a canonical choice in ε = q−1, as claimed. That is, there is a natural norm
on K

‖ · ‖ : K× → R>0, ‖λ‖ = q−vK(λ),

and ‖0‖ = 0. In fact, if vK is normalized, then ‖ · ‖ takes only rational values,
and a group homomorphism K× → Q>0 is obtained. Thus we have the following
commutative diagram:

WK W ab
K K×

Q>0

rK

‖ · ‖
‖ · ‖

This defines a map ‖ · ‖ : WK → Q>0.
For example: if E = Q, then ‖ · ‖ : WK → GL1(E) is a representation; more

generally, all integer powers of ‖ · ‖ will yield a representation of WK .

For another example, suppose f(‖ · ‖m) = 0; what is ‖F̃rob‖? (As before, F̃rob ∈
WK is a lift of Frob ∈ Z). Then for the above diagram to commute, we must have

that rK(πK) = Frob−1(IKab/K) maps to q−1, and hence ‖F̃rob‖ = q.
Now, we introduce the notion of a Weil-Deligne representation. This is a

pair (ρ0, N), where ρ0 : WK → AutE(V ) ∼= GLn(E) is a continuous representation
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as before (E is a field of characteristic 0 with the discrete topology, and V = En),
and N is a nilpotent endomorphism of V such that, for all σ ∈ WK , one has

ρ0(σ)Nρ0(σ)−1 = ‖σ‖N. (∗)

For a trivial example: let ρ0 be any continuous representation, and N = 0. Thus
every representation gives rise to a Weil-Deligne representation.

For a nontrivial example: let E = Q and V = 〈e1, e0〉Q. Let

ρ0(σ) =

(
‖σ‖ 0

0 1

)
, N =

(
0 1
0 0

)
so that

ρ0(σ)e1 = ‖σ‖e1, ρ0(σ)e0 = e0,

and
Ne0 = e1, Ne1 = 0.

We check that property (∗) holds:(
‖σ‖ 0

0 1

)(
0 1
0 0

)(
‖σ‖−1 0

0 1

)
=

(
0 ‖σ‖
0 0

)
= ‖σ‖N.

Exercise 14. Check that property (∗) holds when V = Qn with basis
e0, . . . , en−1 with representation ρ0(σ)ei = ‖σ‖iei and nilpotent operator
Nei = i+ 1, i = 0, . . . , n− 2, Nen−1 = 0.

We say that a Weil-Deligne representation (ρ0, N) is F -semisimple if ρ0(F̃rob)
is a semisimple matrix (i.e. diagonalizable over E); this notion is independent of

choice of lift F̃rob.

Remark. In general, we call a representation of a group G is semisimple if it is a
direct sum of simple representations. With a little work, one can show that in the
case G = WK , and ρ0 is continuous, (ρ0, N) is F -semisimple if and only if ρ0(G) is
semisimple.

With this machinery, we can now define one half of the local Langlands corre-
spondence for GLn: it will be the set of isomorphism classes of all n-dimensional,
F -semisimple Weil-Deligne representations of WK . We will define the other half in
the next lecture.
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6 Lecture Six

6.1 Representations of GLn(K)

In stark contrast to previous lectures, almost all representations here will be infinite-
dimensional.

Here’s the set-up. Let E be a field, discretely topologized. Let V be an E-vector
space (possibly infinite-dimensional). Let K/Qp finite.

Let π : GLn(K)→ AutE(V ) be a group homomorphism.
There are too many π’s. We want a sensible notion of continuity.

Definition. Say that π is smooth if for all v ∈ V , the stabilizer Stabπ(v)
df
= {g ∈

GLn(K)
∣∣ π(g)(v) = v} is open. (We have put the p-adic topology on GLn(K).)

Remark. This is equivalent to the map GLn(V ) × V → V being continuous. On
one hand, if the stabilizer is open, then the preimage of any v along the action splits
into its cosets; on the other hand, if the preimage of v along the action is open, then
you can intersect it with the open set GLn(V )×{v} to obtain Stabπ(v)×{v}; since
the product topology is the box topology for a finite product, Stabπ(v) is open.

Definition. Say that a smooth π is smooth-admissible or just plain admissible, if
for all U ⊆ GLn(K) an open subgroup, the fixed points V U of U is finite-dimensional.

If we say “π-admissible”, we mean that π is smooth-admissible.
For example, if the dimension of V is 1, then the trivial representation π(g) = 1

for all g is smooth and admissible. If the dimension of V is infinite, then the trivial
representation is smooth, but not admissible.

This is tricky to show, but true: π irreducible and smooth implies π admissible.2

Let’s describe the topology on GLn(K).

Definition. A basis of open neighborhoods of the identity in GLn(K) is given by
the matrices {

M ∈ GLn(OK)
∣∣M ≡ In mod pmk

}
m∈Z≥0

.

Remark. Recall that π is called irreducible if there exist exactly two GLn(K)-
invariant subspaces, namely 0 and V .

Here’s a vague statement of the local Langlands conjectures for GLn.

2Question: why? Who proved this?
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• Local class field theory tells us that K×
∼−→ W ab

K .

But we want to understand all of WK . Langland’s insight was that you could
reinterpret this local class field theory isomorphism: if you see the abelianiza-
tion of a group, this tells you something about its 1-dimensional representation
theory. Therefore, irreducible 1-dimensional representations of K× should be
the same as irreducible 1-dimensional representations of WK , and the trick
is that we’re going to study the rest of WK by studying the rest (i.e. the
higher-dimensional representation theory of K×.)

• Local Landlands conjecture for GLn. There exists a canonical (functorial,
definable, bi-interpretable, etc...) bijection

irreducible, smooth-
admissible representa-
tions of GLn(K)


{
n-dimensional, F -semi-
simple Weil-Deligne rep-
resentations of WK .

}

Remark. Of course, we have to be careful about the criteria by which we define
“canonical”. It’s easy to check that either side of this correspondence has the sae
cardinality, for example, but any randomly chosen bijection won’t do.

Next time, we’re going to convince ourselves is that when n = 1, this is precisely
local class field theory, and then we’re going to see lots of examples in the case of
n = 2 of elements on both sides.
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7 Lecture Seven

7.1 Some comments

Last time we finished by stating the local Langlands correspondence for GLn. Today
we’re going to think about E = C-representations (on both sides of the correspon-
dence) for concreteness.

We can interpret the word ‘canonical’ in the statement of the LLC as meaning
that the bijection satisfies a long list of nice properties – e.g. there is a notion of
duality on both sides, we may define L-functions and ε-factors, etc.

A historical note: the list of ‘nice properties’ for the bijection in the LLC for
GLn became sufficiently long that it became a theorem that there was at most one
bijection satisfying the nice properties. It turns out that there is at least one such
bijection satisfying these properties. In the function field case, the existence of this
bijection is a theorem of Laumon, Rapoport, and Stuhler; the p-adic field case is a
theorem of Harris and Taylor. The proofs in both cases are global.

Two obvious observations:

1. This is a brilliant generalization of local class field theory. Given a p-adic field
K we have to choose an algebraic closure K, and it is the representations of
Gal(K/K) that turn out to be important.

2. This is completely pointless as it relates two uninteresting sets, since we have
seen neither Weil-Deligne representations nor smooth admissible irreducible
representations of GLn(K) showing up elsewhere in mathematics. We’re in
some sense bijecting two rather pathological collections of objects.

Today we will begin to check that the local Langlands correspondence is useful.

Remark. For any connected reductive group G over K (meaning, roughly, over K
our group G is isomorphic to some nice group such as GLn, O(n), Sp(n), etc.), we
can formulate a local Langlands correspondence for G between smooth irreducible
admissible representations of G(C) and certain Weil-Deligne representations of some
Weil group associated to the L-group of G(C). However, this is not a bijection but a
surjection with finite fibers, which again satisfies some long list of natural properties
(though in this case the list does not uniquely characterize the map). The finite
fibers of the map are called ‘L-packets’.
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7.2 Local Langlands for GL1

One side of local Langlands for n = 1 consists of 1-dimensional Weil-Deligne repre-
sentations (ρ0, N) : WK → GL1(C) (note that we must have N = 0 and ker ρ0 closed
- hence ρ0 factors through W ab

K
∼= K×). Hence this side of the correspondence is just

1-dimensional continuous complex representations of W ab
K .

The other side of the correspondence consists of smooth irreducible admissible
representations of K×. It is not difficult to check that an admissible irreducible
representation of K× must have finite dimension - in fact, it must be one-dimensional.
Furthermore continuity turns out to be equivalent to smoothness. Hence this side of
the correspondence is just continuous group homomorphisms K× → C×.

Then rK of local class field theory gives us the desired canonical bijection.
If π : K× → C× is a smooth admissible irreducible one-dimensional represen-

tation, we may define the conductor f(π) to be 0 if π|O×K is trivial and otherwise

f(π) = r, for r the smallest positive integer so π|1+PrKOK is trivial.
One can check that the conductors of ρ0 and the corresponding π are the same.

7.3 Weil-Deligne representations arising from `-adic repre-
sentations

As ever, K/Qp is a finite extension. Say ρ : Gal(K/K) → GLn(Q`) is a continuous
representation of the absolute Galois group of K (GLn(Q`) carries the `-adic topology
for ` 6= p a prime).

The wild part of the inertia subgroup will end up being finite under this repre-
sentation, but the same cannot be said of the tame part.

These `-adic representations show up in ‘nature’: for example, the `-adic Tate
module of an elliptic curveE/K, or more generally, `-adic étale cohomologyH i

ét(XK ,Q`)
of an algebraic variety X/K. Furthermore `-adic deformations of examples give new
examples.

Remark. If E/K is an elliptic curve with split multiplicative reduction, then E(K) ∼=
K
×
/(qZ) for some q ∈ K, |q| < 1 canonically. This allows one to explicitly compute

the `-adic Tate module of E as T`E/IK/K =
(
cyclo ∗

0 Id

)
where ∗ can be nontrivial and

infinite.

Recall that ` 6= p, so if ρ is an `-adic representation as above, ρ(IK/K) can be
infinite, but ρ(Iε

K/K
) is finite for ε > 0 since Iε

K/K
is a pro-p-group. Also recall that

Gal(Kt/Knr) ∼=
∏

r prime
r 6=p

Zr,
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so the only part we need to worry about is the Z`-part.
Fix t : Gal(Kt/Knr) → Z` a surjection. Also fix φ ∈ Gal(K/K) lifting Frob ∈

Gal(Knr/K).

Proposition 2 (Grothendieck). If ρ : Gal(K/K)→ GLn(E) for E =
Q` is a continuous `-adic representation, then there exists a unique
Weil-Deligne representation (ρ0, N) : WK → GLn(E) such that ρ(φmσ)
for any σ ∈ IK/K ,m ∈ Z is equal to ρ0(φmσ) · exp(N.t(σ)). In fact the
isomorphism class of (ρ0, N) is independent of the choice of φ, t.

Note that taking ρ0 to be the restriction of ρ would not necessarily work due to
the fact ρ is continuous with respect to the `-adic topology on E while ρ0 must be
continuous with respect to the discrete topology on E. We may define the exponential
of a nilpotent matrix via the usual power series.

Remark. In the Tate curve example, it turns out that N is nonzero; indeed, N =
( 0 1

0 0 ).

Remark. Not all Weil-Deligne representations arise in this way, since those (ρ0, N)
that do must have that all eigenvalues of ρ0(φ) be `-adic units. However, this is
in some sense the only obstruction - if the eigenvalues of ρ0(φ) are `-adic units for
some Weil-Deligne representation (ρ0, N), then there exists ρ so the Weil-Deligne
representation arises from ρ.

7.4 Smooth admissible representations of GL2(K)

Say we have χ1, χ2 : K× → C× continuous admissible characters. Define I(χ1, χ2) to
be the vector space of functions φ : GL2(K)→ C (pointwise scalar multiplication and
addition are the operations) such that φ is locally constant for the p-adic topology
and φ (( a b0 d ) g) = χ1(a)χ2(d)‖a/d‖1/2φ(g).

This can also be described as an induced representation from the upper triangular
subgroup B to GL2(K).

Define π : GL2(K)→ AutC(I(χ1, χ2)) by (π(g)φ)(h) = φ(hg) for g, h ∈ GL2(K), φ ∈
I(χ1, χ2).
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8 Lecture Eight

Lemma 1. Let B(K) be the upper triangular matrices. Then

GL2(K) = B(K) ·GL2(OK) = {bg : b ∈ B(K), g ∈ GL2(OK)}.

Proof. Let M =

(
a b
c d

)
∈ GL2(K). We want β ∈ B(K) and γ ∈ GL2(OK) such

that M = βγ.

Without loss of generality, we may assume M ∈ SL2(K) as we can left multiply by(
det(M)−1 0

0 1

)
. We may further assume c, d ∈ OK and at least one of them is a

unit. This is because we can choose α ∈ K× such that αc, αd ∈ OK and at least one

is a unit by left multiplication by

(
α−1 0
0 α

)
. If c is not a unit, we can multiply on

the right by

(
0 −1
1 0

)
∈ GL2(OK). We can switch c, d so without loss of generality

we assume that c is a unit in OK . We see(
1 −a/c
0 1

)(
a b
c d

)
=

(
0 −1/c
c d

)
∈ GL2(OK).

Remark. Let ϕ : GL2(K) → C be locally constant; then ϕ is continuous with
respect to the discrete topology on C and hence its image must be finite. ϕ(B(K))
is controlled by the definition of I(χ1, χ2).

Recall: I(χ1, χ2) is a vector space, and is smooth and admissible. We have the norm
‖ · ‖ : K

× → Q≥0, defined by πK 7→ q−1
K .

Question: Is I(χ1, χ2) irreducible?
No, this is easy to see if we study Inaive(χ1, χ2) = {ϕ(Mg) = χ1(a)χ2(d)ϕ(g)}, where

M =

(
a b
c d

)
. and noticing that Inaive(χ1, χ2) = I(χ1‖ · ‖−1/2, χ2‖ · ‖1/2).

If χ1 = χ2 are both the trivial representation, using Frobenius reciprocity we can
see that Inaive(χ1, χ2) contains the constant functions, and therefore contains a one-
dimensional G-invariant subspace. More generally, we can show that if χ1 = χ2 then
Inaive contains a one-dimensional G-invariant subspace. There is another case when
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I(χ1, χ2) is not irreducible, this is when χ1/χ2 = ‖ · ‖±2. In this case Inaive(χ1, χ2)
has a one-dimensional quotient.

This is what happened: There’s a duality, i.e., there is a natural pairing

I(χ1, χ2)× I(χ−1, χ−1
2 )→ C

involving an integral on G and B. At some point we change left Haar measure on
B to a right Haar measure. These don’t coincide and differ by the “fudge factor”
‖a/d‖1/2. Thus, the dual is I(χ−1

1 , χ−1
2 ).

Remark. (Theorem 1.21 Bernstein-Zelevinsky) Turns out I(χ1, χ2) is irreducible if
χ1/χ2 6= ‖ · ‖±1. If χ1/χ2 = ‖ · ‖−1 then we have the exact sequence

0→ ρ→ I(χ1, χ2)→ S(χ1, χ2)→ 0

where ρ = (ρ, V ) is the one-dimensional representation of GL2(K) given by g 7→
(χ1×‖ · ‖1/2

K )(det g). It is a fact that S(χ1, χ2) is irreducible. It follows from duality
that if χ1/χ2 = ‖ · ‖1 then there is an exact sequence

0→ S(χ2, χ1)→ I(χ1, χ2)→ ρ→ 0

There is a completely different construction (cf. Jacquet-Langlands; for understand-
ing the articles in this book, Bump’s book is helpful). It was an observation of Weil
that for any field k one can write a precise presentation of SL2(k):〈
A(t) =

(
t 0
0 t−1

)
, B(u) =

(
1 u
0 1

)
,W =

(
0 −1
1 0

) ∣∣∣∣ explicit obvious relations

〉
Upshot: We can construct representations of SL2(k) by giving explicit actions of the
generators on some C-vector space, and then checking relations. Weil observed that
we can use the vector space of L2 functions on k. These are another huge source of
representations of SL2(k), and hence GL2(k).

(Theorem 4.6 in J-L, page 72) Let L/K be a quadratic extension. If χ : L
× → C×

is admissible, with χ 6= χ ◦ σ (1 6= σ ∈ Gal(L/K)), then one can construct an
irreducible, infinite-dimensional representation BCK

L (χ) of GL2(K) on the space of
square-integrable functions on L.

Remark. 1. I(χ1, χ2), S(χ, χ×‖·‖),BCK
L (ψ) are all infinite-dimensional, smooth-

admissible representations. The last two are always irreducible, and the first
is irreducible for the cases mentioned in the above discussion.
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2. The only isomorphisms between the representations I(χ1, χ2) have the form
I(χ1, χ2) = I(χ2, χ1), when χ1/χ2 6= ‖ · ‖±1.

3. When char(κK) = p > 2, then these are all the infinite-dimensional irreducible
smooth-admissible representations of GL2(K). This is not true for p = 2.

4. The only finite-dimensional representations π of GL2(K) are one-dimensional,
and hence factor through the abelianisation. Thus, it’s of the form χ ◦ det
where χ : K

× → C× .
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9 Lecture Nine

Recall the examples we have seen so far of smooth, irreducible, admissible represen-
tations of GL2(K), namely:

• I(χ1, χ2), when χ1/χ2 6= ‖ · ‖±1;

• S(χ, χ× ‖ · ‖);

• χ ◦ det; and

• BCK
L (ψ).

It is a fact that, if p = char(kK) > 2, these are the only smooth irreducible admissible
representations of GL2(K).

If G is a connected, reductive group over K and π is a smooth admissible repre-
sentation of G(K), then there is a notion of “genericness” of π: if G = GL2, then π
is called generic if dim(π) is infinite.

Hence, suppose π is an irreducible, admissible representation of GL2(K), and
assume that π is infinite-dimensional.

Theorem 9.1. (Casselman) For n ≥ 0, define

U1(pnK) =

{(
a b
c d

)
∈ GL2(OK) : c ≡ 0 mod pnK , d ≡ 1 mod pnK

}
.

Then every U1(pnK) is compact-open, and the quantity d(π, n) := dim
(
πU1(πnK)

)
is finite. Furthermore,

d(π, n) = max
(
0, 1 + n− f(π)

)
for all n ≥ 0.

Proof. Omitted (see Casselman’s Antwerp conference proceedings).

Exercise 15. Check that the theorem holds for I(χ1, χ2), with χ1/χ2 6=
‖ · ‖±1.

Exercise 16. Check that

f
(
I(χ1, χ2)

)
= f(χ1) + f(χ2)

and that

f
(
S(χ, χ× ‖ · ‖

)
=

{
1 if f(χ) = 0,

2f(χ) iff(χ) > 0.
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Exercise 17. Prove Schur’s lemma: if π is an irreducible admissible
representation of GLn(K), then there exists an admissible character
χπ : K× → C× such that, for all λ ∈ Z

(
GLn(K)

) ∼= K×, the action
of λ on π is that of the scalar χπ(λ); the character χπ is called the
central character of π.

Exercise 18. Show that

χI(χ1,χ2) = χ1χ2 = χS(χ1,χ2) and χφ◦det = φ2

for any φ : K× → C×.

Now, returning again to the local Langlands correspondence, we introduce some
notation: assuming that the correspondence is true for GL1, write χi for the character
K× → C× associated to the representation ρi : WK → C× for i ≥ 1, and conversely.
Then the correspondence for GL2 associates:

1. I(χ1, χ2) to the Weil-Deligne representation (ρ0 = ρ1 ⊕ ρ2, N = 0),

2. S(χ1, χ1 × ‖ · ‖) to (
ρ0 =

(
‖ · ‖ρ1 0

0 ρ1

)
, N =

(
0 1
0 0

))
,

3. χ1 ◦ det to (
ρ0 =

(
ρ1 × ‖ · ‖1/2 0

0 ρ1 × ‖ · ‖−1/2

)
, N = 0

)
, and

4. BCK
L (ψ) to

(
ρ0 = IndWK

WL
σ,N = 0

)
, where IndGH is the induced representation,

ψ : L× → C× and 1 6= σ ∈ Gal(L/K).

In the case p = char(kK) = 2, a problem arises from the fact that there is a Galois
extension K/Q2 with Galois group isomorphic to S4, which has no abelian subgroup
of index 2.

For GL2, the local Langlands correspondence was proven by explicitly writing
down these associations; for general GLn, representation-theoretic techniques are
needed to reduce the problem to matching irreducible pairs (ρ0, N) with so-called
supercuspidal representations π, using a global argument.

We now introduce some terminology regarding Weil-Deligne representations (ρ0, N).
Define the conductor of (ρ0, N) to be

f(ρ0, N) = f(ρ0) + dim
(
V IK/K/(kerN)IK/K

)
.

Note that f(ρ0, 0) = f(ρ0) and that det(ρ0) : WK → C×.
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Exercise 19. Check that if π corresponds to the Weil-Deligne repre-
sentation (for the GL2 Langlands correspondence), then f(π) = f(ρ0, N)
and that χπ corresponds to det(ρ0) via local class field theory.

Exercise 20. Check that, if p > 2, then the only F -semisimple, two-
dimensional Weil-Deligne representations of WK are the ones we have
listed above. (Hint: look up result 2.2.5.2 in Tate’s “Number theoretic
background”).

We will close our discussion of the local Langlands correspondence with an explicit
consideration of the “unramified” case (i.e., when f(π) = 0) in dimension two. If
(ρ0, N) is the corresponding Weil-Deligne representation, then f(ρ0, N) = 0 also, and
there are precisely two options: either

1. π = I(χ1, χ2) for some χi : K× → C× factoring through K×/O×K with χ1/χ2 6=
‖ · ‖±1; or

2. π = χ ◦ det for some χ : K× → C× factoring through K×/O×K .

If dimπ =∞, so that π = I(χ1, χ2) as in case 1, then the fact that f(π) = 0 implies
that πGL2(OK) is one-dimensional.

More generally, if G is a connected, reductive, unramified group over K (such as
GLn), and π is a smooth admissible irreducible representation of G(K), then we say
that π is unramified if there exists a hyperspecial maximal compact subgroup H of
G(K) such that πH 6= 0 (such as H = GLn(OK)).

If we want to perform calculations with π, a good place to start is with the
invariant subspace πGL2(OK), which we note is not GL2(K)-invariant. We will do this
by introducing the Hecke operators.

Let G = GL2(K); or, more generally, any locally compact, totally disconnected
topological group (maybe satisfying some additional properties). Then if π is a
representation of G and U, V ⊆ G are compact open subgroups (for instance, U =
U1(pnK) or GL2(OK)) and g ∈ G, there exists a Hecke operator[

UgV
]

: πV → πU ,

which is C-linear, and is defined as follows: write the (compact) subset UgV as a
disjoint union of its cosets

UgV =
r∐
i=1

giV,
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and put [
UgV

]
x :=

r∑
i=1

gix.

This may be thought of as a sort of averaging process.

Exercise 21. Check that
[
UgV

]
x does indeed lie in πU , and is inde-

pendent of choice of coset representatives gi.

Returning to the GL2(K) case, and assuming f(π) = 0, let us take U = V =
GL2(OK), and define the operators S, T to be

S :=
[
U
(
πK 0
0 πK

)
V
]

: GL1(OK)→ GL1(OK).

and
T :=

[
U
(
πK 0
0 1

)
V
]

: GL2(OK)→ GL2(OK).

Then dim πGL1(OK) = 1, so by Schur’s lemma, T acts via a scalar t ∈ C and s ∈ C.

Exercise 22. If π = I(χ1, χ2), χ1/χ2 6= ‖ · ‖±1, and f(π) = 0, then
show that

t =
√
qK × (α + β) and s = χπ(πK) = αβ,

where α = χ1(πK), β = χ2(πK), and qK = |kK |. Also check the case
when π is one-dimensional and unramified.

Exercise 23. Show that if π is an irreducible admissible representation
of GL2(K) and f(π) = 0 (where π is I(χ1, χ2) or is one-dimensional,
then π corresponds to the Weil-Deligne representation (ρ0, 0), where

ρ0 : WK → WK/IK/K
∼= Z→ GL2(C),

and ρ0(Frob) has characteristic polynomial X2− t√
qK
X+s and Frob ∈

WK/IK/K.
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Exercise 24. If G = GLn and

Ti = GLn(OK)



πK
πK

. . .

πK
1

. . .

1


GLn(OK)

(with i copies of πK on the diagonal), corresponding to the scalars ti,
then compute the characteristic polynomial of ρ0(Frob).

If G = G(K) with G/K unramified, and if π is an unramified representation of G,
then Langlands reinterpreted the Satake isomorphism to associate to π a semisimple
conjugacy class in LG(C); in particular, the conjugacy class is that of ρ0(Frob), where
π corresponds to (ρ0, N).
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10 Lecture Ten

Part 2: The global Langlands correspondence.
In this part, K will be a number field, i.e. a finite extension of Q.
We’ll start by talking about the structure Gal(L/K) of a finite Galois extension

L/K, and in particular its relationship to local Galois groups. Taking limits, we get
structure on Gal(K/K). In the local situation, the Weil group wasn’t quite the right
answer because we needed Weil-Deligne representations; in the global case, we need
the “global Langlands group”, but no one knows what that is...3

However, we still have `-adic representations of Gal(K/K), and these are maybe
a working definition of the ρ-side of the correspondence. And then on the π-side is
where we see automorphic representations.

The global Langlands philosophy is that every automorphic representation of
GL2(K) should yield a 2-dimensional representation of the global Langlands group
(whatever this is...)

“Uncheckable conjecture”: all automorphic representations for π should corre-
spond to n-dimensional representations of a global Langlands group.

Here’s a checkable conjecture instead: all algebraic automorphic representations π
of GLn(K) should correspond to “motivic” n-dimensional representation of Gal(K/K)→
GLn(Q`) (“unramified outside a finite set, de Rham...”) and these should correspond
to “motives”:

{
algebraic automorphic rep-
resentations π of GLn(K)

} {
“motivic” representations
ρ : Gal(K/K)→ GLn(Q`)

}

{motives}

Furthermore, if we abelianize the global Langlands group, we should get K×\A×K .
In n = 1, the “uncheckable conjecture” will be global class field theory.4

3Quote: ‘You can begin to see why this is called a “philosophy”, because some parts are very
well-defined, and for other parts you have to be... a little bit of a dreamer. I think I read in a paper
of Arthur that in 100 or so years time after we’ve proved all the various Langlands correspondences,
maybe the very last theorem will be that the global Langlands group exists. Maybe we’ll have to
construct all the representations and then say, “ha ha! by the Tannakian formalism...” ’

4Quote: ‘I don’t know if this is worth mentioning, but I’ve had this dream—the automorphic
representations of GLn(K) should be a subset of a new p-adic space of p-adic automorphic repre-
sentations of GLn(K).’
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10.1 Galois groups

Return to a finite extension K/Q.
K contains OK , the algebraic integers in K; for instance if K = Q, then OK = Z.
Choose 0 6= p, a prime (and hence maximal). This will be an ideal of OK , with

OK/p =: kp a finite residue field.
We can complete K at p. Here’s one way of doing it: we can define

OKp

df
= lim
←−
OK/pn

and we put

Kp
df
= Frac

(
OKp

)
.

Alternatively, with p fixed, then if λ ∈ K×, then λOK is a fractional ideal of
K and therefore factors as the product of pvp(λ) with other prime ideals to various
powers, where vp : K× � Z, and we can define ‖λ‖p a norm on K with ‖0‖p = 0 ad

‖λ‖p
df
= (qp)

−vp(λ).
The norm on K induces a metric, and now we can complete K with respect to

this metric and get Kp a local field. Kp is a finite extension of Qp, where p ∩ Z = p.
Now, let L/K be a finite Galois extension of number fields. We get a finite Galois

group Gal(L/K).
Let’s say we’ve got p ⊆ OK as above, and we’ve got this number field L with

pOL⊆L:

OK OL

p pOL

We know from undergraduate abstract algebra that pOL will be an ideal, but may
not be a prime ideal. However, it factors into prime ideals of L, say

pOL = Pe1
1 Pe2

2 · · ·Peg
g ,

with each P a prime ideal of OL.
Gal(L/K) acts on L, and on OL (by exercise 5), and acts trivially on K and

hence on p.
Therefore, Gal(L/K) maps pOL to pOL.
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Exercise 25. Show that, if σ ∈ Gal(L/K) then σ(Pi) is a prime ideal
of OL, so σ(Pi) lies in the set {P1, . . . ,Pg}.5

Exercise 26. Show that the action of Gal(L/K) on the set of primes
of OL dividing p is transitive.

As a consequence we see that e1 = · · · = eg. This also means in some sense that
the Pi are all isomorphic, since they are Galois-conjugate. Therefore,

LP1 ' · · · ' LPg ,

where LP = OL/P.
Here’s the set-up. We have L/K finite Galois, p as before, so that pOK factors

into
∏

i≤gP
ei
i . Set P = P1, fixed choice of a prime of L.6

DefineDP
df
= {σ ∈ Gal(L/K)

∣∣σ(P) ⊆ P}. Then Gal(L/K)/DP = {P1, . . . ,Pg}.
Our task is to understand this DP. If σ ∈ DP, then σ : L → L, OL → OL, and

P→ P. Then again by transport de structure, we get σ : LP → LP fixing Kp.
It turns out that LP/Kp is Galois and that DP ' Gal(LP/Kp), so Gal(LP/Lp)

lives inside Gal(L/K).
(This is in Serre’s Local fields).
Recap: we start with Gal(L/K) and we choose some p ⊆ OK . Then we have

to choose a P | pOL, which induces an identification DP ⊆ Gal(L/K), and we can
identify DP with Gal(LP/Kp).

Inside Gal(LP/Kp) is an inertia subgroup. A global fact: if p does not divide the
discriminant of L/K, then this inertia subgroup is trivial.

If LP is an unramified extension ofKp, then there exists FrobP ∈ DP ⊆ Gal(L/K).
FrobP is slightly annoying: because it depends not only on p but also on the

choice of P | pOL. Say P′ is another choice.

5Here’s a trivial observation: if X and Y are objects in mathematics, topological spaces or
groups or whatever, and you do some kind of calculation in X which involves taking elements in
X and using axioms or whatever, then because this calculation is definable in X, an appropriate
notion of isomorphism will show the analogous calculation in Y to be valid also. This is called
by Deligne, in French, “transport de structure,” and it’s a completely trivial observation. But
sometimes mathematics is about giving the right definitions or thinking about things the right way.
It turns out that thinking clearly about this trivial observation in the particular case where X
happens to be equal to Y but the isomorphism is not the identity map can sometimes really help,
e.g. X = Y = L and σ the isomorphism is in Gal(L/K).

6‘Somehow you remember where you were when you learn things. I learned about modules at a
bar. I was reading Atiyah-Macdonald.’
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By transitivity of the action of Gal(L/K) on {P1, . . . ,Pg}, there exists a σ ∈
Gal(L/K) such that σ(P) = P′, and then by transport de structure, DP′ = σDPσ

−1

and FrobP′ = σ FrobP σ
−1.

Upshot from these considerations: you can define Frobp to be the conjugacy
class of FrobP = {FrobP′ such that P′ | pOL}, and this works for all p not dividing
the discriminant of L over K.
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11 Lecture Eleven

11.1 Decomposition and inertia subgroups

Recall that for L/K a finite Galois extension and p a nonzero prime ideal of OK ,
the ideal pOL Is probably not prime. We may factor pOL as

∏r
i=1 P

ei
i , a product of

prime ideals of OL.
As we have seen, Gal(L/K) acts on the set of these Pi - in fact, it acts transitively

on this set.
Fix P = Pi for some I and set DP/p = {σ ∈ Gal(L/K) : σ(P) = P}. This is the

decomposition group.

Exercise 27. Check that, if σ ∈ DP/p, then σ acts on the comple-
tion LP of L at P and fixes Kp, and so σ ∈ Gal(LP/Kp) = DP/p ⊆
Gal(L/K).

We can then define again an inertia subroup IP/p = ILP/Kp ⊆ Gal(LP/Kp) =
DP/p.

Now we consider a miracle. There is an ideal ∆ = disc(L/K) ⊆ OK , the dis-
criminant of L/K, such that p - ∆ if and only if IP/p = {1} for any P lying over
p. (The inertia subgroups are independent of the choice of P up to isomorphism, by
transport de structure.)

Thus for all p excepting some finite set S = {p : p | ∆L/K} we get for any P lying
over p a cyclic group DP/p = 〈FrobP〉 = DP/p/IP/p = Gal(kP/kp).

Remark. Say L/K is finite, then what is 〈FrobP〉? To see that, pick P/p, then
there exists a unique element σ ∈ Gal(L/K), s.t. σ(x) ≡ x#kp for all x ∈ OL. Then
we denote FrobP to be the element σ and choose 〈FrobP〉 to be the conjugacy class
of that element. One could show that the class is independent of the choice of the
prime ideal P lying above p.

However we now encounter an issue: FrobP depends on choice of P lying over
p, so p determines a conjugacy class of automorphisms FrobP for P|p. By abuse of
notation, we will write Frobp for that conjugacy class.

Here is another important fact. Every conjugacy class C of Gal(L/K) is equal
to Frobp for infinitely many p. This is a consequence of the Chebotarev density
theorem.

In fact, the density of primes p such that Frobp = C is #C/#Gal(L/K).
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11.2 Infinite extensions

For K a number field with fixed algebraic closure K, Gal(K/K) is ramified at every
prime of K.

Let S be some finite set of maximal ideals of OK . We want to be able to define
Frobp for p /∈ S.

It turns out that if K/L1/K,K/L2/K are towers of extensions so that Li/K
finite and unramified outside S, then the same is true of the compositum.

Thus we can define
KS =

⋃
L/K finite Galois

unramified outside S

L.

For example, if S is empty, QS = Q. However for general K a number field, even
if S is empty the extension KS/K may be infinite.

Theorem 11.1. Let S be a finite set of primes of K, let d ∈ Z>0, then
there exists only finite many L/K satisfying

(1). [L : K] ≤ d;

(2). L/K is unramified outside S.

Theorem 11.2. (Chebotarev) Let L/K be a finite Galois extension.
Let C ⊂ Gal(L/K) be a conjugacy class. Then there are infinitely many
places v of K, unramified in L, s.t. Frobv = C. In fact,

|C|
|Gal(L/K)|

= Drichlet density of number of such primes

Now consider K = Q, S = {p}. It is immediately apparent that KS contains
Q(ζpn) for any n ≥ 1.

For K = Q, N ∈ Z≥1, define S = {p : p | N}; then similarly KS contains Q(ζN).
If p /∈ S is a prime, there should be a canonical conjugacy class Frobp in (Z/NZ)×,
which is abelian. It is immediately apparent that we should have Frobp = p mod N .
This can be seen by considering the action on ζN and the action on the residue field.

Let’s stick to the case now K = Q, S = {p}. It is immediately apparent that KS

contains
⋃∞
n=1 Q(ζpn) =: Q(ζp∞). Hence Gal(KS/K) surjects onto Gal(Q(ζp∞)/Q) =

Z×p .
If r is prime and r 6= p, we want to find Frobr in Z×p : similar considerations

as before make it clear that in each (Z/pnZ)× = Gal(Q(ζpn)/Q) we have Frobr =
r mod pn, so Frobr ∈ Z×p is easily defined.
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In the more general case, we may write Gal(KS/K) as a projective limit of
lim←−Gal(L/K) for L/K finite Galois and unramified outside S – in which case for
all p /∈ S we get conjugacy classes Frobp,L/K ⊆ Gal(L/K) for each L which ‘glue
together’ in a nice way to give a conjugacy class Frobp,KS/K ⊆ Gal(KS/K).

The Chebotarev density theorem does not apply to infinite extensions. However,
if L/K is an infinite Galois extension unramified outside S, the map p 7→ Frobp for
{p /∈ S} has dense image; that is,

⋃
p/∈S Frobp ⊆ Gal(L/K) is dense.

As a corollary, if we have some map F : Gal(L/K)→ X continuous and constant
on conjugacy classes, we may be able to recover F from the data F (Frobp) for p /∈ S.

11.3 Representations of Galois groups

Theorem 11.3 (Brauer-Nesbitt). Let G be a group and E a field.
Recall that a representation ρ : G → GLn(E) is called semisimple if ρ
is a direct sum of irreducible representations. If we have two semisimple
representations ρ1, ρ2 : G → GLn(E) and for any g ∈ G, {ρi(g)}i=1,2

have the same characteristic polynomials, then in fact ρ1
∼= ρ2.

Proof. Algebra.

Remark. The above is not true that if we replace GLn(E) with an arbitrary group
and ‘having the same characteristic polynomial’ with being conjugate to one another.

Remark. If char(E) = 0 it suffices that tr(ρ1) = tr(ρ2) (though both must still be
semisimple). If n! is invertible, this is true since we can compute the characteristic
polynomial of ρ(g) from tr(ρ(gi)) for i = 1, . . . , n.

Exercise 28. For G = Z/3Z, E = F2, find non-isomorphic ρ1, ρ2

which are semisimple and reducible such that tr(ρ1) = tr(ρ2).

The upshot of all this is that if we have an `-adic representation ρ : Gal(KS/K)→
GLn(E) (where E some finite extension of Q`), continuous with regard to the `-
adic topology and semisimple (or just irreducible), the characteristic polynomial of
ρ(Frobp) for all p /∈ S is a well-defined polynomial Fp ∈ E[x]. IF we know all Fp for
p /∈ S, then ρ is uniquely determined by this data.

Now, as an example, let’s do the cyclotomic character.
Let K = Q, S = {p}. Let L = Q(ζp∞). Then Gal(L/K) = Z×p ⊆ GL1(Qp).

By the fundamental theorem of Galois theory, Gal(Q/Q) surjects onto Gal(Q(ζp∞)/Q) ⊆
GL1(Qp). Hence we get a one-dimensional p-adic representation of Gal(Q/Q). ρ is
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called the p-adic cyclotomic character, ωp. It is determined by the fact that
ρ(Frobr) = r ∈ Z×p for all primes r not equal to p.

A confusing thing: if p, ` are distinct primes, with S = {p, `}, we have two
representations ωp : Gal(Q/Q) → Gal(QS/Q) → Z×p and ω` : Gal(Q/Q) → Z×` .
Note that Frobr for r /∈ S give a dense subset of Gal(QS/Q).

Then ωp, ω` are two Galois representations that are equal on some dense subset of
Gal(QS/Q). Does Brauer-Nesbitt imply ωp = ω`? No, because these representations
are over different fields.

In fact we will find that kerωp, kerω` are very different.
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12 Lecture Twelve

Another weird example: Let K/Q be a number field and E be an elliptic curve over
K, and let S0 be the set of finite places (maximal ideals of OK) where E has bad
reduction. Let ` be a prime number; the Galois group Gal(K̄/K) acts on E[`n](K̄).
The Tate module is defined as

lim←−
n

E[`n] = T`[E] ' Z` × Z`.

We can realize the Galois action by looking at the map

ρE,L : Gal(K̄/K)→ GL2(Z`) = Aut(Z` × Z`).

The above map is well defined up to conjugation. ρE,L factors through Gal(KS0∪{p|`}/K).
The characteristic polynomial of ρE,`(Frobp) is X2 − apX + N(p) ∈ Q[X] ↪→ Q`[X]
where ap = 1 + N(p) − #Ē(κp) and N(p) is the norm. The trace of ρE,L(Frobp)
is ap, which is independent of `. What we need to observe is that ρE,`, ρE,p are
not isomorphic when p 6= `. This is because ρE,` is infinitely ramified at `, but
ρE,p(wild inertia at `) is finite.

12.1 `-adic Representations

Let K be a number field and E/Q` be a finite extension. Let S be a finite set of
maximal ideals of OK .

Definition. If ρ : Gal(KS/K) → GLn(E) is continuous with respect to the `-adic
topology on the right-hand side, and the profinite topology on the left-hand side,
we call ρ an `-adic representation of Gal(K̄/K). We also say that ρ is unramified
outside S.

Definition. We say that ρ is rational over E0 (a subfield of E) if, for all p /∈ S, the
characteristic polynomial ρ(Frobp) lies in E0[X].

Example 2. 1. Consider the cyclotomic character

ω` : Gal(Q̄/Q)→ GL1(Q`)

Frobr 7→ r, r 6= `.

Then ω` is rational over Q.

2. Tate modules of elliptic curves are rational over Q.
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3. (Deligne) `-adic étale cohomology of smooth proper algebraic varieties (over
K), H i

ét(XK̄ ,Q`) are rational over Q.

Definition. We say that ρ is pure of weight w if ρ is rational over a number field
E and, for all embeddings i : Ē ↪→ C and all eigenvalues α of ρ(Frobp) (p /∈ S), we
have

|i(α)| = (#kp)
−w/2.

Example 3. 1. (Deligne) H i
ét(XK̄ ,Q`) is pure of weight i when X is a smooth

proper algebraic variety.

2. Cyclotomic characters are pure of weight −2.

3. Tate modules are pure of weight −1; in this case, the roots of X2−apX+N(p)

are complex conjugates, and |ap| ≤ 2
√
N(p) (Hasse inequality).

Now ` will vary. Let K be a number field, E0 be a subfield of E, a finite extension
of Q and S0 be a set of finite places. We are given a huge amount of data, as for all
p /∈ S0 we have a polynomial Fp ∈ E0[X]. Also, for all maximal ideals λ ⊆ OE0 we
have an `-adic representation

ρλ : Gal(KS0∪{p|`}/K)→ GLn((E0)λ)

where the completions (E0)λ for λ | ` are finite extensions of Q`.

Definition. We say ρλ is a compatible system of λ-adic representations if for all λ | `
and p /∈ S0, p - `, the characteristic polynomial ρλ(Frobp) = Fp(X) independent of
λ.

Example 4. 1. For cyclotomic characters, Fp(X) = X−p and so is a compatible
system.

2. For Tate modules T`E, for all ` and E0 = Q, one has

Fp(X) = X2 − apX +N(p),

and hence this is a compatible system.

3. H i
ét are known to be compatible systems.

The main aim of global class field theory is to understand Gal(K̄/K)ab.
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12.2 Adèles

Let K be a number field of degree d. There are d embeddings σ : K ↪→ C. Let the
number of real embeddings be r1 and the number of complex embeddings be 2r2,
then d = r1 + 2r2.

Definition. An infinite place of K is either a real place v = σ : K → R or v =
{σ, σ ◦ c} : K → C \ R, where c is complex conjugation. We then define

K∞ =
∏
v

Kv,

the product taken over all infinite places.

Remark. 1. K∞ = K ⊗Q R.

2. K∞ = Rr1 × Cr2 as rings.

3. K
×
∞ = (R×)r1 × (C×)r2 are not connected in general.
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13 Lecture Thirteen

Last time we introduced the notion of an infinite place of a number field K. For
instance, if K = Q

(
3
√

2
)
, then we have

K∞ = K ⊗Q R =
(
Q[X]/(X3 − 2)

)
⊗Q R = R[X]/(X3 − 2).

The roots of our polynomial are α = 3
√

2 ∈ R, w = ζα, and w̄ = ζ2α, where ζ3 is a
primitive third root of unity; thus

K∞ = R[X]/(X − α)(X2 + αX + α2).

The Chinese remainder theorem implies that this is isomporphic to(
R[X]/(X − α)

)
×
(
R[X]/(X2 + αX + α2)

) ∼= R× C;

the isomorphism with the real field is canonical, whereas the isomorphism with C is
only unique up to complex conjugation.

Definition. Let K be a number field and p ⊆ OK a maximal ideal (i.e. finite place),
and Kp the completion of K at p. The finite adèle ring of K (or the finite adèles
of K) is the restricted product of all finite places Kp with respect to the family OKp ;
that is,

AK,f :=
∏
p

′
Kp ⊆

∏
p

Kp,

the prime on the product indicating that, if x = (xp)p ∈ AK,f with every xp ∈ Kp,
then xp ∈ OKp for all but finitely many places p. Set theoretically:

AK,f =
{

(xp)p ∈
∏
p

Kp : xp ∈ OKp for all but finitely many p
}
.

Exercise 29. Show that AK,f is a ring under pointwise addition and
multiplication, and that there is a “diagonal embedding” K ↪→ AK,f .

The restricted product construction endows AK,f with a topology: an open neigh-
bourhood of 0 in AK,f is a product

∏
p Up, with every Up ⊆ Kp an open neighbourhood

of 0 and all but finitely many Up = OKp . In particular,
∏

pOKp is a compact open
neighbourhood of 0.

We now define the adèle ring (or adèles) of K to be

AK := K∞ × AK,f =
∏
v

′
Kv,

46



the restricted product taken over all (finite and infinite) places v, with the product
topology. The diagonal inclusion obviously extends to an embedding K ↪→ AK .

We can create an analogous construction for function fields: for instance, take
K = C(t) and put OK = C[t]. The maximal ideals of OK take the form t−λ, λ ∈ C,
with completion Kλ = C((t − λ)), i.e., the ring of formal Laurent series. There is
then an inclusion

K ↪→
∏
v∈C

′
C((t− v)),

the restricted product taken with respect to the power series rings C[[t− v]].

Exercise 30. Just as K∞ = K ⊗Q R = K ⊗Q Q∞, show that

AK,f = K ⊗Q AQ,f and AK = K ⊗Q AQ.

Theorem 13.1. One has

AQ,f = Q +
∏
p

Zp;

that is, that if x = (xp)p ∈ AQ,f , then there exist λ ∈ Q (⊆ AQ,f ) and
µ ∈

∏
p Zp such that x = λ+ µ.

Proof. Let S be the (finite) set of primes such that xp ∈ Zp for all p /∈ S; we will
induct on the order of S. If S = ∅, then x ∈

∏
p Zp and we are done.

Otherwise, choose p ∈ S and write

xp =
∞∑

m=−n

amp
m ∈ Qp,

where a−n 6= 0; put λ = a−np
−n + · · · + a−1p

−1, and write λ = N
pn

where N is an

integer. Then clearly λ ∈ Z` for all ` 6= p, and so y = (yp)p = x − λ has yp ∈ Zp
for all p /∈ S \ {p}, which has strictly smaller cardinality; so by induction, we are
done.

Exercise 31. Show that AK,f = K +
∏

pOKp for a general number
field K.

We turn our attention for the moment to the group of units of the topological
ring AK , i.e., A×K . This is comparatively small with regard to the ambient ring: for
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instance, if xp = p for all finite places and x∞ = 1 for the infinite place, then x ∈ AQ,
but x−1 /∈ AQ. One can check that

A×K,f =
∏
p

′
K×p ,

the restricted product taken with respect to the subgroups O×Kp
, and hence that

A×K =
∏
v

′
K×v .

We call A×K the idèle group (or simply the idèles) of K. Again, the restricted
product gives us a topology on the idèles, which is not the subspace topology of A×K
in AK .

Remark. We could generalize idèle group in the following way: for fixed number n,

GLn(AK) := {(d, g) ∈ AK ×Mn×n(AK)|d det(g) = 1 ∈ AK}

In particular, if n = 1, we have GL1(AK) = A×K .

Both the adèles and the idèles are natural objects in global class field theory.

Theorem 13.2. There exists a continuous, surjective group homomor-
phism

K×\A×K
rK
� Gal(Kab/K),

called the global Artin map, with nontrivial kernel.

We know a priori that the global Artin map cannot be an isomorphism, because
its domain contains K×∞, while its codomain is profinite. In particular, the image of(
K×∞
)◦

(i.e. the connected component of the identity) lies in a totally disconnected
group, and so must be a singleton.

It turns out that, if CK is the image of
(
K×∞
)◦

in K×\A×K , then ker rK is precisely
the closure of CK . We now list without proof two other properties of rK :

1. For every finite place p of K, there is a commutative diagram

K×\A×K Gal(Kab/K)

K×p Gal(Kp/Kp)
ab

rK

rKp
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where the inclusion Kp ↪→ K×\A×K sends x to (x)p ×
∏

v 6=p(1)v.

2. If L/K is a finite extension, then there is a commutative diagram

L×\A×L Gal(Lab/L)

K×\A×K Gal(Kab/K)

rL

N

rK

where N is the norm map.
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14 Lecture Fourteen

Remark. We know the kernel of the global Artin homomorphism onto Gal(Kab/K),
so we “know” the group Gal(Kab/K). In general, however, we don’t know Kab.

In the case where K is Q or imaginary quadratic, we do know Kab (see Serre’s
other Cassels-Fröhlich article.)

Let’s analyze Q×\A×.

Lemma 2.

A×Q = Q×.

(∏
p

Z×p × R>0

)
,

i.e., if (xv) ∈ A×Q, then there exists λ ∈ Q× such that xp/λ ∈ Z×p for
all p, and x∞/λ > 0.

Proof. We have to look at the bad set from (xv) ∈ A×Q, S = {p
∣∣xp 6∈ Z×p }. We induct

on the cardinality of S. If S = ∅, then λ = ±1 depending on the sign of x∞. For
general S 6= ∅, then choose some prime p ∈ S, so that xp ∈ Q×p and xp /∈ Z×p .

Rewrite xp = pnu where u ∈ Z×p , and set λ = pn. Then λ ∈ Z×r , for all r 6= p.
Dividing by λ, we reduce to the case S\{p}, and by induction we are done.

Remark. In the case when K is a number field, this is hard to push through.
Suppose we have some xp, where p is some finite place. What happens if vp(xp) = n?
Then we want to set λ ∈ K×, with OKλ = pn.

But what if pn is not principal? Then the lemma is no longer true.

Exercise 32. Show that the double quotient

K×\A×K/

(∏
p

O×Kp
×K×∞

)
is precisely the ideal class group of K.

Remark. In fact, we’ve shown that

A×Q =
(
Q×
)
×

(∏
p

Z×p × R>0

)
,

because

Q× ∩

(∏
p

Z×p × R>0

)
= {1}
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In fact, we’ve gotten something for free!

Corollary 1. Q×\A×Q is canonically isomorphic to
∏

p Z×p × R>0.

Corollary 2. ker rQ = R>0

Corollary 3. Gal(Q/Q) is canonically isomorphic to∏
p

Z×p = Ẑ× = lim←−
n≥1

(Z/nZ)× = Ẑ×,

which of course suggests that Qab is just the maximal cyclotomic ex-
tension of Q (which is true.)

Definition. Let K be a number field. A Groessencharacter (also sometimes called
a Hecke character, and we will write it as GC) is a continuous group homomorphism
K×\A×K → C×.7

Example 5. Let K = Q. Q×\A×Q = Ẑ× × R>0. If we want to describe the GCs for
Q, we just need to figure out what all the continuous group homomorphisms to C×
from either component of Ẑ× × R>0.

Exercise 33. Show that the continuous group homomorphisms R>0 →
C× are all of the form x 7→ xs

df
= exp(s log x).

What about Ẑ×? Note that C× has no “small subgroups”.
Let α : Ẑ× → C× be a continuous group homomorphism.
Write Ẑ× = lim

←−
(Z/nZ)×, so for U open, we have α−1(U) open, hence α−1(U) ⊇

ker
(
Ẑ× → (Z/nZ)×

)
df
= KN .

Now, a(Kn) ⊆ U , and is a subgroup. Therefore, α(Kn) = 1 and α factors as

Ẑ× � (Z/NZ)×
χ→ C×.

The upshot is: a GC for C is a map Q×\A×Q → C× and for each GC, there exists

a pair (χ, s) where χ is a Dirichlet character and s ∈ C, and a GC on Ẑ× × R>0

factors as Ẑ× × R>0 → (Z/nZ)× × R>0 by (n, x) 7→ χ(n) · xs.
7Why do we care about these things? Here’s a secret: GCs are automorphic representations for

GL1(K). (This was Langland’s insight—now we have to figure out how to change the 1 to a 2.)
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Corollary 4. (Due to Tate.) The set of GCs for Q has the structure
of a Riemann surface.

Fix a Dirichlet character χ and embed C ↪→ {GCs} by s 7→ (χ, s).
In Tate’s thesis, he takes a GC ψ and defines a number L(ψ) ∈

C ∪ {∞}, which induces a complex-valued function L on the Riemann
surface of GCs, which admits a meromorphic extension to all of the
C-eigencurve.

Tate checks that the restriction of L to the copy of C attached to χ
is L(χ, s).

Here’s a generalization of this result to K. Recall for Kp/Qp finite, there’s a
canonical norm where the norm for the uniformizer π is 1

q
(where q is the size of the

residue field #kp), in terms of scaling the additive Haar measure.
The same trick extends to AK ; namely, there exists a canonical Haar measure on

AK for which multiplication by x ∈ A×K scales this Haar measure by ‖x‖, which is
some positive real ‖x‖ ∈ R>0.

This therefore defines a norm ‖ · ‖ : A×K → R>0. Since K× diagonally embeds
into A×K , this canonical norm must be trivial on K×.

The upshot is that ‖ · ‖ : K×\A×K → R>0 restricts to the p-adic norm ‖ · ‖p on
all Kp, to the usual norm on copies of R×, and to the square of the usual norm on
copies of C×.

So we now have an analogue of what we had for the rational numbers. Hence,
the set of all GCs for K also becomes a Riemann surface.

The idea behind the global Langlands philosophy is that there exists a global
Langlands group LQ (in general LK for general K), such that Lab

K = K×\A×K .
And now we have shown the 1-dimensional global Langlands correspondence:

there exists a canonical bijection between automorphic representations of GL1(K)
with 1-dimensional representations of LK .

Remark. Here’s something to think about: if s ∈ Z, life would be better: K = Q
and a GC ψ = (χ, s), where χ is a Dirichlet character, so that E0 = Q(ζm) ⊆ C,
so that χ induces χλ : Gal(Q/Q) → GL1((E0)λ), which is a compatible system of
λ-adic Galois representations.

So when s = 1, α is trivial, and ψ = ‖ · ‖−1, ‖πp‖ = 1
qp

.

52



15 Lecture Fifteen

15.1 Recalling definitions

15.1.1 Compatible systems of λ-adic representations

Recall the following definition. For K,E0 number fields, S a finite set of maximal
ideals ofOK (a finite set of finite places ofOK), p any finite place of K with p /∈ S and
FP(X) a polynomial in E0[X] which is monic of degree n, we define a compatible
system of λ-adic Galois representations as a collection of representations

{ρλ : Gal(K/K)→ GLn((E0)λ)},

the index running over all finite places λ of E0, such that: for all ρλ and for all p - `
with λ | ` and p /∈ S, the representation ρλ is unramified at p and ρλ(Frobp) has
characteristic polynomial Fp(X), independent of λ.

We give some examples:

(i) A Dirichlet character χ : (Z/NZ)× → C× in fact has image in E0 = Q(ζd),
where d = #(Z/NZ)× = φ(N) (i.e. the Euler totient function). So if we let
K = Q, S = {p | N}, we may define ρλ : Gal(Q/Q) → Gal(Q(ζN)/Q) →
GL1((E0)λ), which gives a “stupid” example of a compatible system of Galois
representations.

It is immediately apparent that ρλ(Frobp) for p /∈ S does not depend on λ since

it will in fact lie in GL1(E0) ⊆ GL1((E0)λ) and its characteristic polynomial is
by definition X − χ(p).

(ii) Consider, for any integer n ∈ Z, the nth power of the cyclotomic character
ω` : Gal(Q/Q) → Gal(Q(ζ`∞)/Q) ∼= Z×` ↪→ GL1(Q`). Then for K = Q =
E0, S = ∅, Fp(X) = X − p, we see that ω`(Frobp) = p independent of ` for
p 6= `.

Then the nth power of the cyclotomic character also gives a compatible system
as desired.

(iii) The Tate module T`E of an elliptic curve E also gives an example.

15.1.2 Grossencharacters

We also will recall the definition of a Grossencharacter. For K = Q we have A×K =

Q× × Ẑ× × R>0; we note that any continuous group homomorphism K×\A×K → C×
must factor through Ẑ× × R>0 → (Z/NZ)× × R>0 for some N . For example:
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(i) Recall that any Grossencharacter for K = Q is defined by a complex number
s and a Dirichlet character (Z/NZ)× → C× such that on the real component
of Q×\A×Q we have x 7→ xs, and on the profinite part the map is given by the
Dirichlet character.

(ii) Consider the case K = Q(i).

The adèles AK are equal to AK,f ×K∞. In this case, we have an isomorphism
K∞ ∼= C. We may define A×K,f =

∏′
pK

×
p , the restricted product indicating that

if (xp)p ∈ A×K,f , then vp(xp) = 0 for all but finitely many p.

Note the following construction: given a finite idèle x = (xp)p, define np :=
vp(xp) ∈ Z for each p. Clearly np = 0 for all but finitely many p.

Define a fractional ideal I(x) =
∏

p p
np ⊆ K. This is in fact a finite product,

which is an ideal if all np ≥ 0.

Thus we get a map from A×K,f to the set of fractional ideals of K, under which
the image of K× is the set of principal ideals of K – so, the quotient maps to
the class group, in some sense.

We return to our case K = Q(i). We want to write down a Grossencharacter.

We see that A×K = A×K,f ×K×∞. We claim that A×K = K× · (
∏

pO
×
Kp
×K×∞). This

is a consequence of the fact that K has class number 1.

Proof. Write x ∈ A×K as a product xf × x∞ where xf is a finite idele and
x∞ ∈ C×.

Then since K has class number 1, I(xf ) = (λ) for some λ ∈ K×. Then one can
check easily that vp(xp/λ) = 0 for all p; hence xf/λ ∈

∏
pO
×
Kp

, as desired.

This proof works for any K with class number 1.

Then for any K a number field of class number 1 we see that to give a
Grossencharacter ψ : K×\A×K → C× it suffices to define a continuous ψ on
K×∞ ×

∏
pO
×
Kp

, such that ψ is trivial on K× ∩ (
∏

pO
×
Kp
×K×∞) = O×K .

Thus for K = Q(i), take any ideal N ⊆ Z[i]. We then take any group homo-
morphism χ : (Z[i]/N )× → C×.

Then χ gives us a map
∏

pO
×
Kp

= (ÔK)× → (OK/N )× → C×.

Abstractly as a group, R>0 × S1 ∼= C×. We can define a group homomorphism
on the real part by x 7→ xs for some s ∈ C and on the S1-part by z 7→ zn for
some n ∈ Z. This exhausts the group homomorphisms C× → C×.
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The upshot so far is that given such χ, s, n, we get some ψ0 :
∏

pO
×
Kp
×K×∞ →

C×.

However, ψ0 may not extend to a Grossencharacter. When will it? Exactly
when χ and C× → C× given by s, n are both trivial on O×K = {±1,±i}.

Exercise 34. With ψ0 defined as above, check that ψ0
4 always

extends to a Grossencharacter.

(iii) Now we will consider K = Q(
√

2). We note that OK = Z[
√

2] and O×K =
±1× 〈1 +

√
2〉.

Here A×K = K× · (
∏

pO
×
Kp
×K×∞) since we again have class number 1.

A character of
∏

pO
×
Kp

will factor through some map α : (Z[
√

2]/N )|times →
C× (same argument with profinite completion).

In this case K×∞
∼= R× × R×. A character will look like

χ∞(x1, x2) = |x1|s1|x2|s2 sgn(x1)e1 sgn(x2)e2 ,

for two complex numbers si and a choice of sign ei ∈ {0, 1} for each i = 1, 2.

We can then define ψ0 :
∏

pO
×
Kp
×K×∞ → C×.

How do we get ψ0 to extend to a Grossencharacter? This happens when ψ0(1+√
2) is trivial - then |1 +

√
2|s1|1−

√
2|s2 is a root of unity. If 1 +

√
2 = x, then

|1 −
√

2| = 1/x; hence it is clear that we must have xs1−s2 a root of unity, so
s1 − s2 must be in πi

log(1+
√

2)
Q, which is a discrete set.

The upshot is that if we have χ : (Z[
√

2]/N )× → C× and two complex numbers
s1, s1 + q for q in some discrete set, and some signs, then the corresponding ψ0

to some finite power does extend to a Grossencharacter.
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16 Lecture Sixteen

16.1 Global Langlands Conjecture for GL1

We’ve seen examples of compatible systems of one-dimensional Galois representations
and GCs.

Definition. A GC ψ : K×\AK
× → C× is said to be algebraic if its restriction to the

connected component of the identity (K∞
×)o ' (R>0)r × Cs is defined by

ψ(x1, . . . , xr, z1, . . . , zs) = xn1
1 · · ·xnrr z

nr+1

1 z̄
nr+2

1 · · · znr+2s−1
s z̄nr+2s

s ,

with each ni ∈ Z.

Example 6. 1. ‖ · ‖ : K×\AK
× → C× is algebraic with all ni = 1.

2. For K = Q the GC x 7→ xs is algebraic if and only if s ∈ Z.

Philosophy: Let χ be a GC for K (an automorphic representation for GL1/K); it
corresponds to one-dimensional representations of the (conjectural) global Langlands
group LK . Since we can’t even define the global Langlands group, this correspon-
dence is not so much a conjecture as it is a philosophy.

Theorem 16.1. (Weil, Basic Number Theory?) Let χ be an algebraic
GC, then there exists a compatible system of λ-adic Galois representa-
tions attached to χ, and conversely.

Idea: Let ψ : K×\AK
× → C×, then ψ|(K∞×)o : x 7→ xn. We want a representation

Gal(K̄/K)ab = K×\AK
×/(K∞

×)◦ → GL1(Q`).

Proof. Given an algebraic GC, χ, define

χ|(K∞×)o(x∞) =
∏
v real

xnvv ×
∏

v↔{σ,c◦σ}

(σxv)
nv,1(σxv)

nv,2

with nv ∈ Z, and the second product taken over the complex embeddings σ, c ◦ σ :
K → C (as usual, c is complex conjugation).

We further define

χ0 : AK
× → C×

x 7→ χ(x)

/( ∏
v real

xnvv ×
∏

v↔{σ,c◦σ}

(σxv)
nv,1(σxv)

nv,2

)
.
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We note that χ0 is trivial on the connected component but is non-trivial on K×

(but earlier it was trivial). For λ ∈ K×, χ0(λ) =
∏

σ:K→C σ(λ)nσ where nσ ∈ Z, thus
non-trivial.

One checks that Im(χ0) ⊆ E0 (a number field). Say λ is a finite place of E0, so that
the image of

χ0|K× : Q× → Q`
×

µ 7→
∏
σ

σ(µ)nσ

lies in E0 ⊂ E0,λ with nσ ∈ Z. It extends to a continuous group homomorphism

χ` : (K ⊗Q Q`)
× =

∏
p|`

Kp
× → (E0,λ)

×.

We further define, for λ | `,

ψλ : AK
× → (E0,λ)

×

x 7→ χ0(x)

χ`(x`)

which is very complicated at Kp for p | `, but is ψλ = χ at all places p - `.
Since ψλ is trivial on the connected component and onK×, it extends to Gal(K̄/K)ab =

K×\AK
×/(K∞

×)◦.

Fp(X) = X − χ0(πKp) for a uniformizer πKp and hence it is a compatible system.

Conversely, if ψλ is a compatible system, to show that it comes from an algebraic
GC we use Waldschmidt’s theorem from transcendence theory.

Remark. The big picture:{
automorphic representa-
tions of GL1/K

}
←→

{
one-dimensional rep-
resentations of LK

}
{

algebraic automorphic rep-
resentations of GL1/K

}
←→

{
compatible systems of
one-dimensional repre-
sentations of Gal(K̄/K)

}
{
p-adic automorphic rep-
resentations of GL1/K

}
←→

{
continuous p-adic repre-
sentations Gal(K̄/K) →
GL1(Qp)

}
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The second correspondence is the theorem we just proved above. There is an n-
dimensional analogue of the above statements, where 1 is replaced by n in each case.
However, for general n ≥ 1, most of the terms in this picture aren’t even well-defined
and, hence it’s just a philosophy.

58



17 Lecture Seventeen

Last time, we discussed a series of correspondences related to the global Lang-
lands program; one was the correspondence between the set of algebraic automor-
phic representations for G over K (where G is any connected, reductive algebraic
group), and the set of compatible systems of semisimple `-adic Galois representations
Gal(K/K)→ LG(Qp) (i.e. the Langlands dual group).

In the case G = GLn, we will have LG = GLn, although for general G there are
some subtleties. One is that there is more than one notion of algebraicity, two of
which we might call C-algebraic and L-algebraic, respectively; we will discuss these
more below. Another issue is that the correspondence may fail to be a bijection for
generalG, and may instead be a finite-to-one correspondence; this arises from the fact
that the L-packets, introduced above, are collections of automorphic representations
which may still give the same `-adic representation ρ. A further issue arises from
the fact that different global Langlands parameters may be isomorphic everywhere
locally.

These obstacles are not insurmountable; however, they complicate the under-
standing of our “correspondence,” which must then be investigated more carefully.

Philosophically, we want the `-adic representation ρπ associated to a given au-
tomorphic representation π of G to be defined only up to some Tate-Shafarevich
group, which is trivial when G = GLn, but not generally. We will not pursue these
considerations deeply, and will restrict our attention for the moment to the group
G = GLn.

The correspondence in this case was worked out in a series of papers by Langlands-
Corvallis, and further by Clozel. Explicit correspondences were worked out in the
case when π is an automorphic representation of GLn over K, where K is totally
real (or has complex multiplication), and satisfies both a certain strong self-duality
condition, and a strong algebraicity (or cohomological) condition; Clozel was able to
write down precisely a compatible system ρπ.

Clozel’s proof goes roughly as follows: given π, we find an appropriate Shimura
variety X, then relate the cohomology of X to automorphic forms, using the Eichler-
Shimura congruence relation. More recently (c. 2013), a paper by Harris-Lan-Taylor-
Thorne were able to remove the self-duality condition by (roughly speaking) consid-
ering the representation π ⊕ π∨ rather than π itself. Taking limits of cohomology of
Shimura varieties yields the desired compatible system ρ.

These ideas are rooted in Weil’s construction (which we saw yesterday) of an ap-
propriate one-dimensional `-adic representation ρχ attached to a given Größencharak-
ter χ. Eichler, Shimura, Deligne, and Serre were able to show that, if f is a weight k
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modular eigenform, then there exists a compatible system of two-dimensional Galois
representations Gal(Q/Q).

Now, before we introduce the notion of an automorphic representation, we will
investigate what properties these representations will not satisfy. Recall that the
local Langlands conjectures concern themselves with the set of all smooth-admissible,
irreducible representations of GLn(K) for a finite extension K/Qp, and the set of
certain n-dimensional Weil-Deligne representations.

By contrast, the global Langlands conjectures will be concerned with automorphic
representations of GLn(AK), where K is a number field; by definition, an automor-
phic representation will be irreducible. It is not hard to show that

GLn(AK) =
∏
v

′
GLn(Kv),

the restricted product taken with respect to the subgroups GLn(OKv). By Flath’s the-
orem, we deduce that certain irreducible, well-behaved representations of GLn(AK)
correspond to tensor products of representations of the factors GLn(Kv); we will
write

π =
⊗
v

′
πv,

each πv an irreducible, admissible representation of GLn(Kv).
The idea is now as follows: if π is such a representation of GLn(AK), correspond-

ing to the compatible system ρ under the global Langlands correspondence, then
for every finite place, the representation πv will correspond (by the local Langlands
correspondence) to a Weil-Deligne representation ρ0,v : Gal(Kv/Kv) → GLn(Q`),
obtained by restriction.

Consequently: the definition of an automorphic representation of GLn overK can-
not simply be an arbitrary smooth-admissible irreducible representation of GLn(AK);
here the analogy with the local Langlands correspondence begins to fall apart.

To illustrate this point, we consider an example in dimension one. Suppose on the
contrary that an automorphic representation of GL1/K is simply a representation of
A×K , and let K = Q. By Flath’s theorem it suffices to give representations of Q×v for
every place v.

For the first twenty-five primes p (say), let us define our representation of Q×p via
Z×p 7→ 1 and p 7→ 7; for the remaining primes we will take the trivial representation,
and our representation of Q×∞ = R× will also be trivial. Finally, we put

π =
⊗
v

′
πv,

60



as above, and we have a completely valid representation π of GL1(AQ). If π is in-
deed automorphic, then it corresponds (under global Langlands) to some compatible
system

ρ` : Gal(Q/Q)→ GL1(Q`),

which we want to respect the local Langlands correspondence. In particular, this will
mean that ρ`(Frobp) = 1 for all p > 97, and so by the Chebotarev density theorem
we must have that ρ` is the trivial one-dimensional representation. But this implies
that

ρ`(Frob2) = 1

and not seven, as we have demanded. Thus we see that we will need to take a more
restrictive definition of an automorphic representation, in stark contrast to the local
case.

The main failure of our pathological example π is that it will fail to be trivial on
Q×, as is the case for Größencharakteren; indeed, we have

π(2) = π(2∞, 22, 23, 25, . . .) = 1 · 7 · 1 · 1 · · · = 7 6= 1.

Now: if G is a finite group, suppose we want to find all irreducible representations
of G. Clearly it will suffice to investigate the group ring

C[G] ∼=
⊕

π irreducible

πdimπ.

In fact, if H ≤ G is a subgroup, it is enough to look at C[H\G], which we identify
with the set of functions H\G → C on the coset space. We may view C[H\G] as
a subspace of C[G], and there will be some set S (generally not the entire set of
irreducible representations) and integers m(π) such that

C[H\G] ∼=
⊕
π∈S

πm(π) ⊆ C[G].

Generalizing this idea: taking instead G = GLn(AK), we consider the functions
GLn(K)\GLn(AK) → C, satisfying certain (not too restrictive) conditions – call
these the nice functions φ, and let A0 = A0

(
GLn(K)\GLn(AK)

)
denote the vector

space of all such nice φ. There is an action of GLn(AK) on A0 via

(g.φ)(γ) = φ(γg).

Exercise 35. Check that this is indeed a group action, and is well-
defined in the sense that (g.φ)(αγ) = (g.φ)(γ) for α ∈ GLn(K).
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In the case n = 1, a Größencharakter will be a nice function in A0, and indeed,
a finite sum of arbitrary Größencharakteren will also be nice.

In general, the space A0 will not be irreducible, but may turn out to be a direct
sum of irreducible representations π of GLn(AK); thus we are motivated to investigate
these representations π, and we consider these possible candidates for the definition
of an automorphic representation. We will make this more precise in the next lecture.
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18 Lecture Eighteen

Let K be a number field and let S be a finite set of finite places.
Consider Gal(KS/K). We have conjugacy classes Frobp for each p 6∈ S. If

Gal(KS/K) happened to be a free group, freely generated by these Frobp’s, then we
could just send Frobenius anywhere we like, i.e. we can define ρ : Gal(KS/K) →
GLn(Q`) by choosing random matrices ρ(Frobp) = Mp ∈ GLn(Q`) for all p 6∈ S, and
then we’re finished.

And then the global Langlands conjectures would say: “take any old irreducible
representation π of GLn(AK) and we’ll get ρπ.”

How this would work is that we’d have a decomposition π =
⊗

πv, sending πp
unramified to Mp.

But this is not the truth, because Gal(KS/K) is not freely generated by the
Frobp, and these Frobp are all related in some vastly complex way which no human
understands.

For example, we could just let K be the rational numbers and let S be the primes
{2, 3, 5}. And in this case we could ask: could we choose a member of the Frob7-
conjugacy class and a member of the Frob11-conjugacy class which multiply to the
Frob23-conjugacy class? Things like that.

But! The Chebotarev density theorem gives us something. It says that the Frobp

are dense. In fact it tells us that if we remove a single Frobp, then what’s left is still
dense, so it tells us that this single one that we removed can be written as a limit of
the others.

So it’s complicated, and figuring out these relations is really hard.
So on the automorphic representation side, we don’t get this nice tensor product

decomposition, because this would correspond to having this freely-generated story
on the Gal(KS/K)-side.

Here’s another approach. Based on our successes for GL1, we will restrict to
representations π of GLn(AK) which show up in A0 (GLn(K)) which will be “nice
functions” GLn(K)\GLn(AK)→ C.

Question 1. What’s a nice function?

Well, when n = 1, Groessencharacters were nice. Just compose by the inclusion
C× ↪→ C.

Let χ be a Groessencharacter, χ : GL1(AK)→ C.
Define (g ∗ χ)(γ) = χ(γg) = χ(g)χ(γ), and therefore

g ∗ χ = χ(g) · χ.
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Hence Cχ is a one-dimensional vector space on which GL1(AK) acts via χ.
Also, Groessencharacters are locally constant at finite places and smooth at x.

They’re of the form x 7→ xs. In fact, they’re more than smooth. They’re also
group homomorphisms. But that doesn’t help us here, because nice functions out
of GLn(K)\GLn(AK) are functions on a coset space, which a priori might not be a
group (because GLn(K) is generally not a normal subgroup).

Let’s differentiate f(x) = xs = exp(s log x), so f ′(x) = exp(s log x) · s
x

= xs · s
x
.

Therefore, xf ′(x) = sxs = sf(x).
So it satisfies this natural differential equation.
We need machinery which spits out differential equations.

Definition. “Nice” means:

• locally constant at finite places

• left GLn(K)-invariant

• smooth at infinite places

• satisfies a certain differential equation

• boundedness

18.1 Interlude on differential equations

A Lie group is a group object in the category of smooth manifolds. Given a Lie
group G, we can form its Lie algebra g, which is the tangent space of the identity; g
can be thought of as comprising “differential operators on G”.

There is a natural exponential map g→ G.
If we have an X ∈ g, then we view this as inducing a differential operator on the

space of
{C∞-functions G→ C}

via

(X ∗ f)(g)
df
=

d

dt
(f(g · exp(tX)))

∣∣∣∣
t=0

.

Let’s see an example of this. Let G = GL1(R) = R×.
Then g = R, so let X = 1. Then

(X ∗ f) (g) =
d

dt

(
f(g · et)

) ∣∣∣∣
t=0

,
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and differentiating, we obtain
f ′(g)g.

The point here is that there is a canonical differential operator coming from
the Lie algebra, and this canonical differential operator is apparently not the usual
derivative. To recap, we have a differential equation

(X ∗ f)(x) = xf ′(x), x ∈ R×.

So, returning to our differential equation from before

xf ′(x) = sxs,

we then want to write X ∗ f = s · f .
What does this look like for GL2(R)? In this case g = M2(R) has basis

E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
, H =

(
1 0
0 1

)
, Z =

(
0 1
1 0

)
.

Each of these gives a differential operator on the vector space of C∞-functions
GL2(R)→ C; call the space of such functions V .

Now, we have operators E,F,H,Z : V → V , and these operators do not commute
(e.g. EF − FE = H. So it’s a bad idea to ask for simultaneous eigenfunctions.

So here’s the plan: we’re going to find a bunch of differential operators that
commute!

Let’s start with a Lie algebra g (keep in mind gl2(R)), which is some finite-
dimensional vector space g over R, equipped with a Lie bracket [·, ·] : g× g→ g.

Definition. The universal enveloping algebra of a Lie algebra g is the associative
algebra U(g) such that the functor g 7→ U(g) is left-adjoint to the forgetful functor
from the category of unital associative algebras to the category of Lie algebras (i.e. the
functor which takes the underlying vector space and attaches the commutator as
bracket, [X, Y ] := XY − Y X).

Let g be a Lie algebra with R-basis {X1, . . . , Xd}. This contains all the first order
differential operators. The associative algebra R〈X1, . . . , Xd〉 of non-commutative
polynomials in d variables contains (non-commuting) higher order differential oper-
ators. Taking the quotient by the bi-ideal generated by relations (XiXj −XjXi) −
[Xi, Xj], we obtain the universal enveloping algebra U(g).

What’s the centre of this algebra? It’s a whole bunch of commuting differen-
tial operators, for which we might hope that our nice functions are simultaneous
eigenforms.
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Harish-Chandra figured out what Z(U(gC)) is, where gC = g⊗R C.
g contains a Cartan subalgebra h, and U(hC) is the commutative polynomial ring

C[X1, . . . , Xd].

Theorem 18.1. (Harish-Chandra homomorphism) Let g = gln(R).
Then, there exists a canonical injection

Z (U(gC)) ↪→ U(hC),

and the image is U(gC)W , where W is the Weyl group.

Specializing to n = 2, we get get gC = CE ⊕ CF ⊕ CZ ⊕ CH, with U(gC) 3
EF + FFH, and

Z(U(gC)) ' U(C⊕ C)W = C[X, Y ]Z/2Z.

So now we have a problem: what are the polynomials in 2 variables which are
the same when we interchange X and Y ?

Exercise 36. Show that

Z(U(gC)) ' U(C⊕ C)W = C[X, Y ]Z/2Z = C[S, T ],

where S = XY and T = X + Y .

Tomorrow8 we’ll see the definition of an automorphic representation.

19 Lecture 19

For G a connected reductive group over K (in most cases G = GLn), we want to
define A(G/K) = {φ : G(K)\G(AK)|φ nice} for some value of “nice”.

These “nice” functions will be automorphic forms.
As in the GL1 case, where GL1(AK) ⊇ K×

∏
P O

×
KP
K×∞, which is a subgroup of

finite index (quotient by which is the class group).
φ has to be trivial on K×, and on

∏
P O

×
KP

is in practice finite, with K×∞ a real
manifold.

The same story is true in the GLn case. The proof for GL2/Q is coming later.

GLn(AK) ⊇ GLn(K)
∏
P

GLn(OKP )GLn(K∞)

8“When are we leaving again?” (Note: tomorrow’s the last day.)
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as a subgroup with finite index; again, φ has to be trivial on GLn(K), and we get
a finite amount of information on GLn(OKP ), with GLn(K∞) some real manifold
again.

As a reminder, in the case GL1/Q, at ∞ any φ is a function on R×/Z×, and we
want Grossencharacters to exist in A(GL1/Q).

The conclusion we get from this is that R>0 → C× given by x 7→ xs must be nice.
There is some canonical connection with differential operators in this situation.

For G(R) the Lie group, we get a Lie algebra g; for the GL1-case, we can choose
a bvasis vector D of g so that (Df)(x) = xf ′(x), and D(x 7→ xs) = x 7→ sxs, so
x 7→ xs is an eigenfunction of D - annihilated by D − s.

However, we also want functions like f(x) = xs + 7xt to be ‘nice’ so that A is
a vector space. This function is not annihilated by D − s, but it is annihilated by
(D − s)(D − t).

Abstractly, the algebra C[D] acts on C∞ functions R>0 → C, with sums of
Grossencharacters annihilated by a nonzero idea in C[D].

If I = {D′ ∈ C[D] : D′(f) = 0} for f a sum of Grossencharacters, this is evidently
an ideal. In the cases we have seen so far, I had finite codimension; we see that if we
define a map C[D]→ C2 by h(D) 7→ (h(s), h(t)), the kernel is I = ((D− s)(D− t)),
so I has codimension 2.

For general G, we have Lie algebra g of G(K∞) with basis E1, E2, . . . , Ed of g -
however, these basis elements do not commute.

Instead we consider the universal enveloping algebra U(gC) as defined before
(C〈E1, . . . , Ed〉/(EiEj−EjEi− [Ei, Ej])i,j, the quotient of the noncommutative poly-
nomial algebra in the basis elements by the bi-ideal given by the relations EiEj −
EjEi = [Ei, Ej] for the Lie bracket [, ] of g). Harish-Chandra showed that for
G = GLn/Q the center Z(U(gC)) = C[T1, T2, . . . , Tn]W where W is the symmet-
ric group Sn acting on the Ti in the usual way.

The upshot is that Z(U(gC)) is a canonical source of higher-order differential
operators. Alternatively we can think of these as bi-G-invariant differential operators.

We have a torus T in GLn/Q given by

(
∗ 0 ... 0
0 ∗ ... 0
... ... ... ...
0 0 ... ∗

)
⊆ GLn. Then we get a Lie

subgroup T (R) ⊆ G(R), with Lie subalgebra t ⊆ g.
t has basis t1, . . . , tn and U(t) = C[t1, . . . , tn], with W = NG(T )/T the Weyl group

in this case isomorphic to Sn with the usual action on the ti.
Then Z(U(g)) = C[t1, . . . , tn]Sn = C[σ1, . . . , σn] for σi the ith symmetric polyno-

mial.
For example, in the case GL2/Q, this machine tells us that Z(U(g)) = C[∆, Z]

for two differential operators ∆, Z.
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In this case note that σ1 = t1 + t2, σ2 = t1t2.
If g = Lie(GL2(R)), it is Mat2(R) with the commutator Lie bracket. Recall its

basis {E = ( 0 1
0 0 ) ,F = ( 0 0

1 0 ) ,H = ( 1 0
0 −1 ) ,Z = ( 1 0

0 1 )}. The bracket is given by
[E ,F ] = H, [E ,H] = −2E ,F ,H = 2F , [∗,Z] = 0.

Then U(gC) = C〈E,F,H,Z〉/(EF − FE − H,EH − HE + 2E,FH − HF −
2F, etc.).

Exercise: If ∆ := H2 + 2EF + 2FE, ∆ commutes with E,F,H,Z.
Then ∆, Z ∈ Z(U(gC)). It will turn out that they in fact generate the center -

Z(U(gC) = C[∆, Z].
∆ is some second order differential operator on {f : GL+

2 (R) → C}. As a
reminder, GL+

2 (R) (matrices with positive determinant) acts on the upper half plane
h by ( a bc d ) τ = aτ+b

cτ+d
; this action is transitive. Then there is a surjection GL+

2 (R)→ h
via γ 7→ γi.

The stabilizer of i isR×SO2(R). Then the upper half plane is GL+
2 (R)/(R×SO2(R))

So now for f : h → C and F the associated function on GL+
2 (R), the desired

invariance properties for F carry over to ∆F and we get descent to a function ∆f
on h.

What is this operator? Up to a constant, ∆f = −y2(∂
2f
∂x2

+ ∂2f
∂y2

). The Cauchy-
Riemann equations imply that holomorphic and antiholomorphic functions are an-
nihilated by this.

For GL1/Q our definition of nice was that there was some nonzero ideal in C[D]
annihilating f .

Then once again we want f such that some finite codimension ideal in C[∆, Z] =
Z(U(gC)) annihilates f .

It appears we are interested in functions f : h→ C such that ∆, Z act by scalars
λ, µ respectively on f .

Recall a Theorem of Deligne et al. saying that f a modular eigenform corresponds
to ρf : Gal(Q/Q)→ GLn(Q`) with det ρf = −1.

Now let f(x) be some random irreducible cubic polynomial over Q with three
real roots α, β, γ. Let K = Q[α, β, γ]. Chances are Gal(K/Q) ∼= S3.

There is some standard irreducible two-dimensional representation S3 → GL2(Q).
Fix ρ0 : Gal(Q/Q) factoring through this map and the surjection to Gal(K/Q). Then
we find that the determinant of ρ0(x 7→ x) is −1.

For any ` prime, this gives ρ` : Gal(Q/Q) → GL2(Q`). This gives a “bogus”
compatible system of `-adic representations.

Attached to this system should be an automorphic representation π by the Lang-
lands philosophy; Maas solved this problem by writing down a specific function on
the upper half plane to the complex numbers that is not holomorphic but is invariant
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under some Γ1(N) for N the conductor of ρ0, and ∆f = λf for some λ 6= 0.

Definition. Take G a connected reductive group over a number field K, a fixed
maximal compact subgroup H∞ (sometimes denoted K∞) of G(K∞). (For example,
in our usual examples G = GLn/Q, G(K∞) = GLn(R), H∞ = On(R).) We call a
function φ : G(K)\G(AK)→ C is called an automorphic form if

1. φ is smooth - i.e., if we write G(AK) = G(AK,f )×G(K∞) and write elements
as (x, y), then for x fixed, φ is C∞ with regard to y, and for fixed y, φ is locally
constant with regard to x.

2. φ is well-behaved on compact subgroups in a way somehow related to admissi-
bility - i.e.

(a) There exists Uf ⊆ G(AK,f ) compact open such that φ(gu) = φ(g) for any
u ∈ Uf ;

(b) the C-vector spaced spanned by functions of the form g 7→ φ(gh∞) for each
h∞ ∈ H∞ is finite-dimensional (e.g. φ trivial on H∞).

3. There exists some ideal I ⊆ Z(U(gC)) for g the Lie algebra of G(K∞) such
that I has finite codimension and for any differential operator D ∈ I we have
D(y 7→ φ(x, y)) = 0 for all x ∈ G(AK,f ).

4. Some “boring” growth condition: |φ(x, y)| is at most some constant times ||y||N
for some N and some sensible norm on G(K∞).
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