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Abstract

In these notes we study some aspects of internal category theory in the syntactic
category DefpT q of a first-order theory T ; that is, of categories definable in T .

Disclaimer

These are extremely rough notes, kept for the purpose of writing down definitions and new
and partial results from work-in-progress. As a result, notation is inconsistent and I have not
yet written references or cross-references. Often I resort to using elements and so much of the
material here has not been developed in the full generality it ought to be, though everything
works in DefpT q (implicitly taking points in a monster model), but we should be able to
formulate and prove the results wholly diagrammatically, maybe modulo a Grothendieck
topology.

Comments, questions, and notes on typos or more serious errors are welcome.

A note on notation: when C is an internal category, we write C0 and C1 for the object-of-
objects and the object-of-morphisms. We also sometimes write pCq0 and pCq1 for the same
thing. Also, the internalization of small-completeness and small-continuity for categories
and functors is just internal completeness and continuity: all limits of diagrams internally
indexed by internal categories exist (resp. are preserved).

Introduction

Just as we can study groups definable in some first-order theory T , which are just group
objects in the category DefpT q of definable sets (and definable functions between them) in
T , we can study categories definable in T , i.e. category objects, or internal categories, in
DefpT q.

Internal categories arise naturally elsewhere in mathematics (e.g. internal categories are
internal groupoids are crossed modules in Grp, and internal congruences (e.g. equivalence
relations in Set, ideals in CRing and normal subgroups in Grp ) can be identified as internal
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groupoids.) So it is natural to ask what internal categories in DefpT q have to say about
T . Conversely, it’s also natural to ask how T influences how much category theory we can
recover from just the categories definable in T .

In particular, we look at definable adjoint pairs of definable functors, and recover the general
adjoint functor theorem internal to DefpT q, modulo a definable Skolem function. Motivated
by the desire to rid ourselves of this last requirement, we turn to the internalizations to
DefpT q of anafunctors instead, which were introduced by Makkai to generalize functors and
perform limit constructions in settings without choice, and we prove a general adjoint functor
theorem for definable anafunctors.

Along the way, we note that T having definable Skolem functions is precisely the external
axiom of choice for DefpT q equipped with the regular coverage: that all definable surjections
admit a definable section. We then internalize to DefpT q the fact that the external axiom of
choice for Set is equivalent to being able to upgrade fully faithful essentially surjective func-
tors between small categories to full equivalences of categories. This gives a characterization
of having definable Skolem functions in terms of definable functors.

We also observe that saturated anaequivalences between definable categories provide a gener-
alization of Morita equivalence between definable groupoids; this has recently been applied
to characterize generalized imaginary sorts. We then show that two definable categories
are saturated anaequivalent if and only if there is a bibundle between them, and generalize
appropriate parts of the theory relating definable groupoids and internal covers.
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1 Categories as two-sorted first-order structures

Consider the language Lcat with two sorts tOb,Moru, function symbols dom and cod (some-
times written s and t for source and target) from Mor to Ob, a binary partial composition
function ˝ whose graph relation ˝p´,´,´q Ď MorˆMorˆMor we include as a symbol in
the language.

Since a definable category C in an arbitrary first-order theory T is a (strict) interpretation of
a pure category (i.e. an Lcat-structure satisfying the category axioms) in T , we can see what
definable sets come for free with C in T by looking at what is definable in a pure category.

Definition 1.1. A category is an Lcat-structure satisfying the following axioms, which state
that composition is only defined on arrows with compatible domains and codomains, that
composition is associative, and that there are elements which are simultaneously left- and
right-identities for composition:

(i) @f @g
“

codpfq ‰ dompfq Ñ @h p ˝ pf, g, hqq
‰

.

(ii) @f @g @h
“

˝ pf, g, hq Ø r@h1 p˝pf, g, h1q Ñ h “ h1q ^ domphq “ dompgq ^ codphq “
codpfqs

‰

.

(iii) @f @g @h ˝ pf, ˝pg, hqq “ ˝p˝pf, gq, hq.

(iv) @a P Ob Dea P Mor
`

codpeaq “ dompeaq “ a ^ @f pdompfq “ a Ñ ˝pf, ea, fq ^
codpfq “ aÑ pea, f, fqq

˘

.

As usual, we write ˝ infix whenever it is defined as a function, and write X
f
Ñ Y to denote

that f has domain X and codomain Y . When we need to write composition as a prefix
operator, we use “c” instead of “˝”. Identity maps are necessarily unique, so the function
id : Ob Ñ Mor taking objects to their identity maps is 0-definable.

Definition 1.2. An object c P C a definable category is definable up to isomorphism if some
subset of the isomorphism class of c in C is definable.

The following examples are all definable up to isomorphism.

Example 1.3. Initial and terminal objects: consider

isInitialpxq
df
” @y P Ob D!f : xÑ y,

and dually for terminal objects. These are definable up to isomorphism.

Example 1.4. Slice and co-slice categories: fix a category C and a base b P Ob. For the
objects of the slice category, take the definable set

ObpC{bq
df
“ tf P Mor

ˇ

ˇ codpfq “ bu.
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For morphisms, take

MorpC{bq
df
“ tf P Mor

ˇ

ˇ f : dompgq Ñ domphq for g, h P ObpC{bq such that h ˝ f “ gu.

Remark 1.5. Note that in the same way algebraic groups are group objects in the category
of algebraic varieties, this defines a category object, i.e. an internal category in DefpThpCqq.

Example 1.6. Limits and colimits of arbitrary finite diagrams: if D is a diagram with
finitely many objects d1, . . . , dn with finitely many morphisms between them, a limit to D
is just a tuple px, π1, . . . , πmq where x is an object and the πi are maps xÑ di such that:

(i) whenever f : di Ñ dj P D, f ˝ πi “ πj and

(ii) whenever we have another tuple py, π11, . . . , π
1
nq satisfying the above conditions, there

exists a unique map y
u
Ñ x such that π1i “ πi ˝ u for each 1 ď i ď n.

(Alternately, we can just modify our realization of slice and co-slice categories as definable
categories in C to realize cone and co-cone categories as definable categories in C. Then
limits and colimits are just the terminal and initial objects in those definable categories,
hence definable.)

Example 1.7. Limits and colimits of arbitrary definable diagrams construed as definable
subcategories: in the same spirit as the above example, except instead of capturing the
entire diagram in a sentence, as is possible when D is finite, we only need check that certrain
subtriangles of our diagram commute, and as long as the legs of the triangles belong to
something we can safely quantify over, it doesn’t matter if there are infinitely many things
to check.

Definition 1.8. Let A,B be two definable categories in C. A definable functor F : A Ñ B
comprises definable maps F0 : A0 Ñ B0 and F1 : A1 Ñ B1 which behave like the data of a
usual functor with respect to the internal composition, domain, and codomain maps of either
internal category. If F and G are two definable functors, a definable natural transformation
η : F Ñ G is a definable function A0 Ñ B1 such that the following diagrams commute:

B1 B0 ˆB0

A0

ps,tq

η
pF0,G0q

and

B1 ˆs,B0,t B1 B1

A1 B1 ˆs,B0,t B1.

c

pη˝t,F1q

pG1,η˝sq

c

Example 1.9. Change-of-base functors between slice-categories: if pullbacks exist, this is
clear.

Example 1.10. Epimorphisms, monomorphisms, and subobject classifiers: to be a monomor-
phism f : X Ñ Y means that the definable map pf ˝´q : Homp´, Xq Ñ Homp´, Y q “ f ˝´ :
cod´1

pXq Ñ cod´1
pY q is injective. To be an epimorphism f : X Ñ Y means that the defin-

able map ´ ˝ f : Homp´, Y q Ñ Homp´, Xq is injective. To have a subobject classifier is to
say that there exists a terminal object 1 and a monomorphism true : 1 Ñ Ω for some object
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Ω such that for every object X and monomorphism S ãÑ X, there is a unique map X Ñ Ω
such that S ãÑ X is the pullback of true along the map X Ñ Ω, which is first-order.

Example 1.11. Power objects of a fixed object X: “there exists an object ΩX and a
monomorphism PX ãÑ X ˆ ΩX such that for any other object Y and every monomorphism
S ãÑ X ˆ Y there is a unique classifying map X ˆ Y Ñ X ˆ ΩX such that S ãÑ X ˆ Y is
the pullback of PX ãÑ X ˆ ΩX along that classifying map.”

Exercise 1.12. (For the masochistic.) Write out the last four examples explicitly.

Remark 1.13. I don’t think arbitrary limits and colimits are definable. So, to-do: con-
struct two categories equivalent as Lcat-structures, but which realize some limit or colimit
differently.

2 Definable adjunctions

In this section we study pairs of definable adjoint functors between definable categories.

Proposition 2.0.1. Let D1 and D2 be definable categories in T a first-order theory. Let
F : D1 Ñ D2 be a definable functor which is left-adjoint to G. Suppose the family of hom-set
bijections

tφX,Y : HomD2pFX, Y q
„
ÝÑ HomD1pX,GY quXPD1,Y PD2

is definable as a function

ğ

XPD1,Y PD2

HomD2pFX, Y q ÝÑ
ğ

XPD1,Y PD2

HomD1pX,GY q.

Then if D1 has enough projectives, G : D2 Ñ D1 is definable also.

Proof. The definability of the hom-set bijection means that what G does on objects is already
definable. Consider the relation Γ Ď MorpD2q ˆMorpD1q by pf, fq P Γ if and only if @X,

HomD2pFX, Y1q HomD1pX,GY1q

HomD2pFX, Y2q HomD1pX,GY2q

f˝´

φX,Y1

f˝´

φX,Y2

commutes. If f, f
1

are two elements from fiber of Γ at f , then they must both satisfy
f ˝ φX,Y1pgq “ φX,Y2pf ˝ gq “ f

1
˝ φX,Y1pgq for all g : FX Ñ Y1.
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If we have a factorization

Y1 Y2

Y3

f

f1 f2
and choose from the fibers of f1 and f2

morphisms f 1 P ΓpY1
f1
Ñ Y3q and f 2 P ΓpY3

f2
Ñ Y2q, then for all X P D1,

HomD2pFX, Y1q HomD1pX,GY1q

HomD2pFX, Y3q HomD1pX,GY3q

HomD2pFX, Y2q HomD1pX,GY2q

f1˝´

φX,Y1

f1˝´

f2˝´

φX,Y3

f1˝´

φX,Y2

commutes, so that for each g : FX Ñ Y1,

f 2 ˝ f 1 ˝ φX,Y1pgq “ f 2 ˝ φX,Y3pf1 ˝ gq

“ φX,Y2pf2 ˝ f1q

“ φX,Y2pf ˝ gq

“ f ˝ φX,Y1pgq.

Similarly, idY1 ˝ φX,Y1pgq “ φX,Y1pgq. Hence, if for each Y1 there is an X such that X admits
an epimorphism to Y1, then we can right-cancel φX,Y1pgq in the above equations, so that Γ
defines a functor right-adjoint to F .

Corollary 2.0.1. If in the above situation G is definable instead and D2 has enough injec-
tives, F is definable also.

Proof. Immediate upon examination of the proof.

Corollary 2.0.2. Let F : D1 Ô D2 : G be a pair of functors between two categories definable
in a theory T . Then:

(i) If D1 has enough projectives, F is definable, the restriction of G to objects of D2 is
definable, and the counit ε is definable, then G is definable also.

(ii) If D2 has enough injectives, G is definable, the restriction of F to objects of D1 is
definable, and the unit η is definable, then F is definable also.

Proof. φX,Y is always given by
´

FX
g
Ñ Y

¯

ÞÑ

´

X
Gpgq˝ηX
Ñ GY

¯

, and its inverse is given by

taking an X
f
Ñ GY and sending it to εY ˝ F pfq instead.
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2.1 The general adjoint functor theorem

Definition 2.1. Consider the diagram of functors
C D.

E
F G

The comma cat-

egory pF Ó Gq is given by:

Objects: pc, d, αq where c P C, d P D, α : F pcq Ñ Gpdq P E.

Morphisms: HompFÓGq ppc1, d1, α1q, pc2, d2, α2qq is defined to be the set

$

’

’

’

&

’

’

’

%

pβ1, β2q
ˇ

ˇ β1 : c1 Ñ c2, β2 : d1 Ñ d2, and

F pc1q F pc2q

Gpd1q Gpd2q

α1

F pβ1q

α2

Gpβ2q

commutes.

,

/

/

/

.

/

/

/

-

.

Definition 2.2. If F : C Ñ Set is a Set-valued functor on a locally small category C, the
category of elements of F

şcPC
F pcq is given by:

Objects:
 

pc, xq
ˇ

ˇ c P C, x P F pCq
(

.

Morphisms: HomşcPC F pcq ppc1, x1q, pc2, x2qq is defined to be the set

 

f
ˇ

ˇ f : c1 Ñ c2 and F pfqpx1q “ x2.
(

Definition 2.3. Let C
F
Ñ D be a functor between locally small categories, and let U P D.

The category PtpU, F q of U-points of F is given by:

Objects: t
Ů

cPC HomDpU, F pcqqu, each written pc, xq where x : U Ñ F pcq.

Morphisms: HomPtpU,F q ppc1, x1q, pc2, x2qq is defined to be the set

 

f
ˇ

ˇ f : c1 Ñ c2 and F pfq ˝ x1 “ x2.
(

Remark 2.4. Note that if F lands in Set, the category of elements of F is precisely Ptp1, F q.
In particular, the category of elements of a G-set is its action groupoid.

Remark 2.5. Identifying an object d of a category D with the functor from the delooping
of the trivial group B1 Ñ D pointing at d, note that for any functor F : C Ñ D,

pd Ó F q “ Ptpd, F q.

Lemma 2.5.1. Let G : D Ñ C be a functor. G admits a left adjoint F if and only if for each
c P C there is an initial object ic of the comma category pc Ó Gq. ic is called the reflection of
c along G.
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Proof. Suppose F is left adjoint toG. Let η be the unit 1C Ñ GF . Claim: pF pcq, ηpcq : cÑ GF pcqq
is the initial object of Ptpc,Gq. To see this, let pd, x : cÑ Gpdqq be another object in Ptpc,Gq.
Taking F -G transposes, as in

c GF pcq

Gpdq

ηpcq

x ÐÑ

F pcq F pcq

d

idF pcq

x
x
,

shows that any completion to the triangle on the left must be precisely Gpxq, necessar-
ily unique. On the other hand, suppose that each Ptpc,Gq has an initial object ic “
pdc, ηc : cÑ Gpdcqq. F will be defined by

´

c1
g
Ñ c2

¯

ÞÑ

´

dc1
g1
Ñ dc2

¯

.

where g1 is as in the unique completion to the square

c c2

F pdcq Gpdc2q

g

ηc ηc2

Gpg1q

witnessing that ηc is initial in Ptpc,Gq. This is easily seen to be a functor. The hom-set
bijection

HompFc, dq » Hompc,Gdq

is given (from left to right) by

f ÞÑ Gf ˝ ηc, as in

Gpdcq

c

Gpdq

Gf

ηc

Gf˝ηc

and from right to left by

g ÞÑ fd, as in

Gpdcq

c

Gpdq

Gpfdq

ηc

g
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witnessing that ηc is initial. To check naturality on the left, let f : c1 Ñ c2 be a map in C.
Chasing a map g : Fc2 Ñ d through the diagram

HomDpFc1, dq HomCpc1, Gdq

HomDpFc2, dq HomCpc2, Gdq

´˝Ff ´˝f

yields the terms

Gg ˝ ηc2 ˝ f
?
“ Gg ˝GFg ˝ ηc1 ,

which can be seen to be equal by noting that the diagram

Gpdc1q

Gpdc2q

c1 c2 Gpdq

GFf

Gg

f

ηc1

Gg˝ηc2

ηc2

commutes (the outer trapezoid on the left by definition of F ; the inner triangle on the right
by definition.) To see naturality on the right, let f : d1 Ñ d2 be map in D. Chasing a map
g : FcÑ d1 through the diagram

HomDpFc, d1q HomCpc,Gd1q

HomDpFc, d2q HomCpc,Gd2q

f˝´ Gf˝´

yields the terms

Gpf ˝ gq ˝ ηc
?
“ Gpfq ˝Gpgq ˝ ηc,

which can be seen to be equal simply by the functoriality of G.

Definition 2.6. A functor F : C Ñ D satisfies the solution set condition with respect to an
object d P D if there exists a set Sd of objects in C such that for all c P C and @f : dÑ F pcq,
there is a c1 P Sd, a map g : c1 Ñ c, and a map f 1 : dÑ F pc1q such that F pgq ˝ f 1 “ f .

Theorem 2.7. (Freyd’s general adjoint functor theorem.) Let D be complete. G : D Ñ C
admits a left adjoint F if and only if G is continuous and satisfies the solution set condition.

Proof. Suppose that F exists. That G is continuous is a routine Yoneda-style argument. Let

c P C. The solution set Sc for c is just the singleton tdcu
df
“ tF pcqu.
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On the other hand, suppose that G is continuous and satisfies the solution set condition.
Note that D being complete implies that Ptpc,Gq is complete for each c P C: if a diagram
D Ď D becomes a diagram under some c after passing through G, then c forms a cone to
GpDq and hence admits a unique map to Gplim

ÐÝ
Dq. Now, the key property of each Sc is that

they are each weakly initial families for each Ptpc,Gq: for each p P Ptpc,Gq, there exists
some p1 P Sc and a map p1 Ñ p (in Ptpc,Gq.) The product of a weakly initial family is a
weakly initial object, i.e. one which admits some map, not necessarily unique, to every other
object.

To complete the proof, we’ll need to use the completeness of Ptpc,Gq to obtain an initial
object. Let x “

ś

Sc, i.e. the product of the weakly initial family in Ptpc,Gq, which is a
weakly initial object in Ptpc,Gq. Let Endpxq be the diagram of all maps xÑ x. Claim: the
equalizer e as in the limit diagram

e
i
Ñ Endpxq,

is initial in Ptpc,Gq.To see this, let p P Ptpc,Gq, and let e
f

Ñ
g
p be two maps. Let d

j
Ñ e be

their equalizer. There is a map x
k
Ñ d since x is weakly initial. By how we’ve set things up,

the diagram

e x xi
i˝j˝k

idx

commutes. Since equalizer maps are mono, left-canceling i yields j ˝k ˝ i “ ide. Hence, since

eÑ x
i
Ñ d

j
Ñ e

f
Ñ
g
p

commutes, f “ g. Therefore, each Ptpc,Gq has an initial object, and so a left adjoint F
exists.

2.2 A definable general adjoint functor theorem

Definition 2.8. A definable functor G : D Ñ C between definable categories satisfies the
definable solution set condition if there is a uniformly definable family of sets Xc “ ϕpM, cq
where each Xc is a weakly initial family in Ptpc,Gq.

Definition 2.9. A theory is said to have definable Skolem functions if for every definable set
φpx, yq there exists a definable (partial) function on the sort of y that picks out an element
from the fiber φpM, bq for each b of the sort of y, if that fiber is nonempty. When additionally
those functions can be made to depend only on φpM, bq, i.e. if two fibers over b and b1 coincide
as sets then the choice function takes on the same value at b and b1, the theory is said to
have definable choice functions.

Theorem 2.10. Let G : D Ñ C be a definable functor between definable categories, with D
definably complete. Then G admits a definable left adjoint F with the unit η : 1C Ñ GF of
the adjunction also definable if and only if G is definably continuous, satisfies the definable
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solution set condition, and there exists a definable Skolem function for the family of definable
sets tIcucPC, where Ic is the set of initial objects of Ptpc,Gq.

Proof. Suppose first that F % G with F and the unit η definable. Then G is definably

continuous. Assign to each c P C the object
´

Fc, c
ηc
Ñ GFc

¯

of Ptpc,Gq which corresponds

to the component of η at c.

On the other hand, suppose that G is definably continuous and satisfies the definable solution
set condition. Since D is definably complete, and G is definably continuous, Ptpc,Gq is
definably complete for each c P C. The definable solution set condition ensures that each
Ptpc,Gq has an initial object. Write ηpcq “ pdc, xc : cÑ Gpdcqq for the value of our definable

choice function c. If c1
f
Ñ c2 is a map in C, there is a diagram

Gpdc1q

c1 c2 Gpdc2q

Gpf 1q
xc1

f xc2

whose indicated completion uniquely witnesses that ηpc1q is complete, and we define F pfq “
f 1, which is clearly functorial. And the choice function η can be taken verbatim to be the
unit η : 1C Ñ GF . That F is actually left adjoint to G is purely formal, and so the argument
from the general case may be repeated.

Remark 2.11. Note that the Ptpc,Gq are c-definable and so form a uniformly definable
family over ObpCq. Hence, the sets of initial objects of each Ptpc,Gq are a uniformly definable
subfamily.

Therefore,

Corollary 2.11.1. If T has definable Skolem functions, then whenever G : D Ñ C is a
definable functor between definable categories with D small-complete which is right adjoint
as a pure functor, its left adjoint F is definable also.

3 Internal anafunctors in DefpT q

In the last few paragraphs it’s become clear that recovering internal adjoints depends on
choosing a transversal of isomorphism classes in some family of definable categories. So
naively studying internal adjoints in this way requires the ambient category to satisfy some
version of the axiom of choice. Anafunctors, introduced by Makkai, generalize functors to
contexts where there might not be a good notion of choice. In his own words,

Anafunctors provide solutions without introducing non-canonical choices to ex-
istence problems when data are given by universal properties. The best example
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for this is the existence of an adjoint anafunctor when the “local existence crite-
rion”1 is satisfied.

and indeed in this section we’ll find that we can prove a general adjoint functor theorem for
internal anafunctors that requires no choice in the ambient category. An extremely explicit
definition of anafunctors is given by Makkai in his seminal paper, but here we use a slicker
definition involving spans and the regular coverage given by Bartels (2006) and Roberts
(2013), which makes proving things easier. First, we introduce a notion of base change for
internal categories, relative to a cover of the object-of-objects.

Definition 3.1. Let C be an internal category in S finitely complete. Let U
p
Ñ C0 be a

map. The base change of C along p, denoted CrU s, is given as follows:

CrU s
df
“

#

CrU s0 “ U,

CrU s1 “ Ps ˆπC1
,C1,πC1

Pt,
,

where the latter pullback is given as in the diagram

CrU s1

Ps Pt

U C1 U

C0 C0

p s t p

where all three squares are pullbacks, with CrU s’s source and target maps to U the upper-left
and upper-right edges factoring through Ps and Pt.

Remark 3.2. In Set, Pt and Ps are isomorphic by switching sources and targets precisely
when the fibers of p are all isomorphic.

Remark 3.3. CrU s admits a canonical projection ρ back to C, with ρ0 given by p : U Ñ C0

and ρ1 given by the canonical map CrU s1 Ñ C1 in the pullback diagram defining CrU s1 over
C1.

Definition 3.4. A regular epimorphism in S is a map f : X Ñ Y such that f is the
coequalizer of some parallel pair of maps into X.

Lemma 3.4.1. In DefpT q, a map is a regular epimorphism if and only if it is a definable
surjection.

Suppose first f is a definable surjection. Then

kerpfq X Y
s

t

f

1As we will see, this is the anafunctor analogue of the statement that the comma categories as in the
proof of the usual GAFT all have an initial object.
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is a coequalizer diagram. (By using s and t we are implicitly identifying the definable
equivalence relation kerpfq on X with the groupoid whose connected components are the
codiscrete groupoids on kerptq-classes.) On the other hand, suppose that f : X Ñ Y is the

coequalizer of some parallel pair of maps R
s

Ñ
t
X. Since we may form images we may as

well take R to be a relation R
ps,tq
ãÑ X ˆX. That f is the coequalizer of this relation means

that it is constant on R1-classes, where R1 is the equivalence relation on X gotten by taking
the symmetric, reflexive, and transitive closures of R while identifying points elsewhere with
just themselves. This is ind-definable, and in Set we have a factorization

kerpfq X Y

X {R1

s

t

π

f

and since we may always form images in DefpT q, f must be surjective.

Definition 3.5. A regular category S is one which is finitely complete, pullbacks of regular
epis are regular epis, and kernel pairs admit coequalizers.

Lemma 3.5.1. DefpT q is regular.

Proof. Finite limits are constructive and are computed as in Set, where pullbacks of epis
are epis, hence surjective. So the pullback of a definable surjection is a definable surjection,
hence regular. Since images are definable, the kernel pair kerpfq of f is coequalized by the
map f 1, which we define to be f with its codomain replaced by impfq.

Definition 3.6. Let S be a regular category. The regular coverage (which coincides with the
canonical singleton Grothendieck pretopology on C) is the Grothendieck pretopology whose
covering families are singletons of the regular epimorphisms. The Grothendieck topology
generated by the regular coverage is called the regular topology on C.

Definition 3.7. Let pS, Jq be a site such that internal categories admit base changes along
covers in J . An internal anafunctor between internal categories F : C Ñ D comprises the
following data:

(i) A singleton J-cover U Ñ C0.

(ii) An internal functor τF : CrU s Ñ D.

Proposition 3.7.1. Suppose S has pullbacks. The canonical projection ρF : CrU s Ñ C is
fully faithful.
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Proof. Full faithfulness is equivalent to the square

CrU s1 C1

U ˆ U C0 ˆ C0

ps1,t1q

pρF q1

ps,tq

pˆp

being a pullback. Let pQ, ps2, t2q : QÑ U ˆ U, r : QÑ C1q form a cone to the above cospan.
This means that we have a commutative diagram

Q

CrU s1

Ps Pt

U C1 U

C0 C0

r

s2 t2

p s t p

so we get unique mediating maps of cones to the cospans of the bottom two pullbacks:
Q

qs
Ñ Ps, Q

qt
Ñ Pt. Since their compositions with πC1 from Ps and Pt must equal r, this makes

Q into a cone to the cospan of the top pullback as well, which yields a unique mediating
map QÑ CrU s1.

Corollary 3.7.1. When S “ DefpT q and J is the regular coverage, the canonical projection
ρF is fully faithful and surjective on objects.

Proof. pρF q0 is p, which is a regular epi, which is a definable surjection by the earlier lemma.

Another advantage to the approach of defining anafunctors with respect to a coverage instead
of plain spans is that we obtain a very concrete description of their composition (and in the
presence of canonical choices of pullbacks along covers, as in the definable setting, we get a
canonical choice of composition.)

Definition 3.8. Let F : C1 Ñ C2, G : C2 Ñ C be anafunctors, given by

C1rUf s C2rUGs

C1 C2 C3.

ρF τF ρG τG

14



Their composite anafunctor GF : C1 Ñ C3 will be given by

C1rUf ˆpτF q0,pC2q0,pG UGs

C1rUf s C2rUGs

C1 C2 C3,

πF πG

ρF τF ρG τG

where the projection functors πF and πG are obtained as follows: on objects, pπF q0 and
pπGq0 are just the canonical projections UF ˆpC2q0 UG � UF and UF ˆpC2q0 UG � UG. On
morphisms, we induce pπF q1 and pπGq1 as in the diagrams

C1rUF ˆpC2q0 UGs1

P
UFˆpC2q0

UG
s,C1

C1rUF s1 P
UFˆpC2q0

UG
t,C1

PUF
s,C1

PUF
t,C1

UF ˆpC2q0 UG UF pC1q1 UF UF ˆpC2q0 UG

pC1q0 pC1q0

df
“pπF q1

πUF

pF
s t

pF

πUF

and

C1rUF ˆpC2q0 UGs1

P
UFˆpC2q0

UG
s,C2

C2rUGs1 P
UFˆpC2q0

UG
t,C2

PUG
s,C2

PUG
t,C2

UF ˆpC2q0 UG UG pC2q1 UG UF ˆpC2q0 UG

UF pC2q0 pC2q0 UF .

df
“pπGq1

πUG

πUF pG
s t

pG

πUG

πUG

pτF q0 pτF q0

Remark 3.9. By Lemma 2.24 of (Roberts, 2013) GF is actually a strict pullback in the 2-
category of internal categories of the ambient category S, so the composition of anafunctors
is the composition of underlying spans.
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Definition 3.10. The identity anafunctor 1C on a category C is given by taking the base

change CrC0s of C along C0
id
Ñ C0, and setting τidC

to be the identity functor on C. Similarly,
we identify plain functors F as anafunctors by doing the same except we τ from CrC0s to
be F instead.

Definition 3.11. (Roberts, 2013) Given two internal anafunctors C
F
Ñ
G

D, an internal natu-

ral transformation η : F Ñ G, or just a transformation, is an internal natural transformation
(which, abusing notation, we also call η) τF ˝πF

η
Ñ τG ˝πG between the two internal functors

which form the left and right sides of this diagram:

CrUF ˆC0 UGs

CrUF s C CrUGs

D,

πF

πG

τF

ρF ρG

τG

where πF and πG are induced analogously to when they are induced when forming the
composition of anafunctors.

A transformation whose component maps are all isomorphisms will be called an isotransfor-
mation.

3.1 Definable adjoint anafunctors

In this section we resort to using points, and so specialize our ambient category S to one
which admits a faithful left-exact forgetful functor to Set (say, DefpT q). In this setting
we develop the basic theory of adjoint anafunctors, culminating in a general adjoint functor
theorem.

Notation 3.12. If s is an element in UF , we use subscripts and superscripts to denote the
images of s under ρF and τF , e.g. sρF psq, s

τF psq, s
τF psq
ρF psq

.

Definition 3.13. Let F : C Ô D : G be a pair of anafunctors. F is left adjoint to G
(written F % G) if for any sc and vd in UF and UG, we have a bijection

φsc,vd : HomDpτF pscq, dq Ñ HomCpc, τGpvdqq

which is natural in sc and vd in the following way: for c
h
Ñ c1 in C, with lifts sc, tc1 in UF

16



and a vd in UG, the square

HomDpτF pscq, dq HomCpc, τGpvdqq

HomDpτF ptc1q, dq HomCpc
1, τGpvdqq

φsc,vd

´˝τF pρ
´1
F phqq

φt
c1
,vd

´˝h

commutes (note that specifying lifts of c and c1 means that we may use the full faithfulness

of ρF to uniquely lift h, as indicated by the notation), and for d
h
Ñ d1 in D with lifts vd, wd1

in UG and a sc in UF , the square

HomDpτF pscq, dq HomCpc, τGpvdqq

HomDpτF pscq, dq HomCpc, τGpwd1qq

φsc,vd

h˝´ τGpρ
´1
G phqq˝´

φsc,wd1

commutes. Given this data, F and G are said to be hom-set adjoint.

Remark 3.14. Given this definition, it is natural to try to reformulate it in terms of unit
and counit transformations. While (as we will see) we can recover the unit and counit from

the hom-set bijections, formulating the triangle identities F
Fη
Ñ FGF

εF
Ñ F “ idF (resp.

G) in terms of transformations of anafunctors does not go through as smoothly, because it
appears that there is no general way to define the precomposition of a natural transformation
of anafunctors by another anafunctor.

Definition 3.15. (Composing a transformation by an anafunctor) Let η : F Ñ G be
a transformation of anafunctors C Ñ D. Let H : D Ñ E be an anafunctor. Define
Hη : HF Ñ HF as follows: form the composites HF,HF and take their pullback over
C. Note that this pullback admits a mediating map (induced by a mediating map of the
pullback of covers) to CrUF ˆC0 UGs, as indicated in the diagram

CrUHF ˆC0 UHGs CrUG ˆD0 UHs

CrUF ˆC0 UGs CrUF ˆD0 UHs

CrUF s CrUGs DrUHs

C D E.
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We require η to induce a natural transformation pUF ˆD0 UHqˆC0 pUGˆD0 UHq Ñ E1. Recall
that DrUHs1 is defined as the pullback

pD1 ˆs,D0,pH UHq ˆπD1
,D1,πD1

pD1 ˆt,D0,pH UHq.

At the level of objects, this gives us a diagram

UHF ˆC0 UHG

UF ˆC0 UG UH ˆ UH

D1 D0 ˆD0

πUHˆUH

η
pH ,pH

ps,tq

so that taking projections to either side, as in

UHF ˆC0 UHG

UF ˆC0 UG UH

D1 D0

π1˝πUHˆUH

η pτF ˝πF q0
pH

s

and
UHF ˆC0 UHG

UF ˆC0 UG UH

D1 D0

π1˝πUHˆUH

η pτG˝πGq0
pH

t

yields mediating maps us and ut to either component of DrUHs1. That these maps are
fibered over D1 follows from the fact the two cones above have the same map to D1, and so
we may form their product pus ˆD1 utq : UHF ˆC0 UHG Ñ DrUHs1 over D1. We then set

Hη
df
“ pτHq1 ˝ pus ˆD1 utq,

which easily checked to be an internal natural transformation.

Remark 3.16. However, things do not go so smoothly when we take an I : B Ñ C and
try to form ηI : FI Ñ GI a transformation of anafunctors B Ñ D instead. Forming
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compositions and taking pullbacks as before yields the diagram

BrpUFIq ˆB0 pUGIqs

BrUI ˆC0 UF s BrUI ˆC0 UGs CrUGs

BrUIs CrUF s

B C D

pI τI pF τF

where the only sensible thing to do, it would seem, is to find some mediating map from

pUI ˆC0 UF q ˆB0 pUI ˆC0 UGq Ñ UF ˆC0 UG.

This amounts to finding a mediating map UFI ˆB0 UGI Ñ UFI ˆC0 UGI , which generally does
not exist, since there’s no guarantee that the latter is also a weak pullback fibered over C0.
Note that this obstruction disappears when the cover pI is mono, in particular if I is actually
a functor. As we will see, this obstruction will also disappear when we define the triangle
identities for the unit and counit of an adjunction of anafunctors.

Definition 3.17. Let F : C Ô D : G be a pair of anafunctors. Let ε : FG Ñ 1D be a
transformation. Define εF : FG ˝ F Ñ F via precomposition as follows:

pUF ˆD0 UFGq ˆC0 UF D1

UFG » UFG ˆD0 D0,

πUFG
ε

which is easily checked to be a transformation via the naturality of ε.

Definition 3.18. We compose transformations of anafunctors as we do plain functors. To
express this diagramatically, let F,G and H be anafunctors C Ñ D, and let η1 : F Ñ G and
η2 : GÑ H be transformations. The composite η2 ˝ η1 is defined by pointwise composition,
i.e.

UF ˆC0 UH pUF ˆC0 UGq ˆD0 pUG ˆC0 UHq D1 ˆD0 D1 D1.
idˆ∆ˆid η1ˆη2 c

Definition 3.19. Let F : C Ô D : G be a pair of anafunctors. We say that F and G are
unit-counit adjoint if there exist transformations

1C
η
Ñ GF and FG

ε
Ñ 1D

such that the following equations hold:

F F ˝GF

FG ˝ F F

Fη

α1

εF

“ idF
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and

G GF ˝G

G ˝ FG G

ηG

α2

Gε

“ idG,

where α1 and α2 are the canonical associator isotransformations, where, for example, the
map

α1 : ppUF ˆD0 UGq ˆC0 UF q ˆC0 pUF ˆD0 pUG ˆC0 UF qq Ñ C1

is induced by projecting to C0 (along the fiber product in the middle) and composing by the
identity map C0 Ñ C1.

Theorem 3.20. Let F : C Ô D : G be a pair of anafunctors. Then F and G are hom-set
adjoint if and only if they are unit-counit adjoint.

Proof. pñq From the hom-set bijections, obtain η : U1C ˆC0 pUF ˆD0 UGq Ñ C1 by

psdc , vdq φpd
idd
Ñ dq

df
“ c

idd
Ñ τGpvdq

η

and ε : pUG ˆC0 UF q ˆD0 D0 Ñ D1 by

pvcd, scq φ´1pc
idc
Ñ cq

df
“ τF pscq

idc
Ñ d.ε

For the triangle identity at F , let c P C0 and d P D0 and take lifts psdc , vdq and s1τGpvdq. Then
applying Fη yields

ηpsdc , vdq τF
`

ρ´1
F ηpsdc , vdq

˘ `

τF ps
d
cq τF ps

1
τGpvdq

q
˘

.
τF pρ

´1
F iddq

Since vd and s1τF pvdq are also fibered over C0, applying εF yields

τF

´

s1τGpvdq

¯

d,
idτGpvdq

and we can see that

d
τF pρ

´1
F iddq
ÝÑ τF

`

s1τGpvdq
˘ idτGpvdq
ÝÑ d “ idd

by forming the naturality square at sc, v
c and vτF pscq

HomCpc, cq HomDpτF pscq, ρGpv
cq

HomCpc, τGpvτF pscqqqq HomDpτF pscq, τF pscqq

idτF pscq˝´ τF ρ
´1
F idτF pscq˝´

and chasing idc.
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Similarly, taking lifts pvc, scq and v1τF pscq and applying ηF yields

ηpsc, v
1
τF pscq

q “ c
idτF pscq
ÝÑ τGpv

1
τF pscq

q,

and applying Gε yields

τGpv
1
τF pscq

q
τGpρ

´1
G pidcqq
ÝÑ τGpv

c
q “ c,

and to see that
τGpρ

´1
G pidcqq ˝ idτF pscq “ idc,

HomCpc, τGpv
1
τF pscq

qq HomDpτF pscq, τF pscqq

HomCpc, cq HomDpτF pscq, τF pscqq,

τGpρ
´1
G idcq˝´ idc˝´

where chasing idτF pscq yields

φ
`

τGpρ
´1
G idcq ˝ idτF pscq

˘

“ idc,

so that τGpρ
´1
G idcq ˝ idτF pscq “ idc, as required.

pñq On the other hand, given η and ε, define φ and φ´1 as follows: we know that φ´1 would

have to satisfy, for any c1
f
Ñ c2 with lifts sc1 , s

1
c2
, and vc2d ,

HomCpc1, c2q HomDpτF psc1q, dq

HomCpc2, c2q HomDpτFρ
´1
F pfq, dq

´˝f ´˝τF pρ
´1
F pfqq

so that in particular φ´1pfq “ idc2 ˝ τF pρ
´1
F pfqq. Similarly, for any g : d1 Ñ d2, with lifts

vd1 , v
1
d2

, and sd1c ,

HomDpd1, d1q HomCpc, τGpvd1qq

HomDpd1, d2q HomCpc, τGpv
1
d2
qq,

g˝´ τGρ
´1
G g˝´

so that in particular, φpgq “ τGρ
´1
G idd1 . Now, φ ˝ φ´1pfq

?
“ f becomes

τGρ
´1
G

ˆ

τF pscq
idc2˝τF ρ

´1
F f

ÝÑ d

˙

˝ idτF pscq
?
“ f,
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which is precisely the triangle identity at F . Similarly, φ´1 ˝ φpgq
?
“ g becomes

idτGpv1d2 q
˝ τFρ

´1
F

ˆ

c
τGρ

´1
G pgq˝idd1
ÝÑ τGpv

1
d2
q

˙

?
“ g,

which is precisely the triangle identity at G. It is easy to verify that φ is natural, so we
conclude the proof.

Definition 3.21. (Categories of points for anafunctors). Let G : D Ñ C be an anafunctor.
Let c be an object of C. The category of c-points Ptpc,Gq of G is given by:

#

Objects: pairs pvd, c
p
Ñ τGpvdqq.

Morphisms: Homppvd, pq, pv
1
d1 , p

1qq consists of those maps d
f
Ñ d1 such that τF pρ

´1
G pfqq ˝ p “ p1.

That the categories of points have initial objects is precisely what Makkai calls the “local
existence of a left adjoint.” The following is the natural analogue of our earlier lemma on
plain adjoint functors, and provides a converse to 2.1 of Makkai.

Theorem 3.22. Let G : D Ñ C be an anafunctor. G admits left adjoint F if and only if
for all c P C, Ptpc,Gq has an initial object.

Proof. pñq The unit of the adjunction at c

pc, sc, vτF pscqq ÞÑ
´

c
ηpcq
Ñ τGpvτF pscqq

¯

is initial in Ptpc,Gq:

τGpvτF pscqq

c

τGpvdq

ηpcq

p

ðñ

τF pscq

τF pscq

d

idτF pscq

φ´1ppq

where the indicated completion is uniquely determined by taking tranposes across φ.

pðq Construct the anafunctor F as follows: let UF be the coproduct of the objects-of-initial
objects from each Ptpc,Gq. The projection pF : UF Ñ C0 is gotten by just forgetting

everything but the c from a c-point. On sc “ c
pc
Ñ τGpv

1
d1q, τF pscq is just d1. On a morphism

sc
f
Ñ s1c1 , τF pfq is just ρGpgq, where g uniquely completes the diagram

c τGpv
1
d1q

c1 τGpv
2
d2q

pc

ρF pfq

τGpgq

pc1
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witnessing that pc is initial.

Now we give the hom-set bijections. Fix sc “ c
pc
Ñ τGpv

1
d1q and vd. Let g : d1 Ñ d be a map.

Define φpgq as the composite

τGpv
1
d1q τGpvdq

c

τGpρ
´1
G pgqq

pc

and similarly φ´1pc
p1
Ñ τGpvdqq as g, as in the composite

c τGpvdq

τGpv
1
d1q.

pc

p1

τGρ
´1
G pgq

These maps are well-defined because sc is initial; for the same reason, they also invert each
other.

Now naturality: for f : cÑ c1, and lifts sc, s
1
c, vd, chasing g : τF ps

1
c1q Ñ d around the square

HomDpτF pscq, dq HomCpc, τGpvdqq

HomDpτF ps
1
c1q, dq HomCpc

1, τGpvdqq

φ

φ

´˝τF pρ
´1pfqq ´˝f

yields the tentative equality

τGρ
´1
G

`

g ˝ τFρ
´1
F pfq

˘

˝ pc
?
“ τGρ

´1
G pgq ˝ pc1 ˝ f,

which is seen to be true because they are an initial map from pc in Ptpc,Gq. Similarly, taking
g : dÑ d1, lifts sc, vd, v

1
d1 and chasing an f : τF pscq Ñ d through the square

HomDpτF pscq, dq HomCpc, τGpvdqq

HomDpτF pscq, d
1q HomCpc, τGpv

1
d1qq

φ´1

g˝´ τGρ
´1
G pgq˝´

φ´1

yields the tentative equality

τGρ
´1
G pg ˝ fq ˝ pc1

?
“
`

τGρ
´1
G pgq ˝ τGρ

´1
G pfq

˘

˝ pc

which is again seen to be true because they are an initial map from pc1 in Ptpc1, Gq.
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Remark 3.23. When, as in Set and DefpT q, we have a canonical choice of coproduct to
construct UF (projecting with an existential in the latter; just taking a union in the former),
the left adjoint F is canonical, and does not depend on choice.

Before stating and proving the general adjoint functor theorem, we have to define what it
means for an anafunctor to preserve limits.

Definition 3.24. Let G : D Ñ C be an anafunctor. Let J : J Ñ D be a diagram of shape
J in D. Suppose the limit lim

ÐÝ
J exists in D. G is said to preserve the limit lim

ÐÝ
J if for every

lift L of J along ρG, as in

DrUGs

J D,

ρGL

J

the limit of τG ˝ L exists in C and for any vlim
ÐÝ

J P UG lifting a limit to J in D,

τGpvlim
ÐÝ

Jq » lim
ÐÝ

τG ˝ L.

G is said to be small-continuous (resp. for κ in place of small for any infinite cardinal κ) if
it preserves all limits of small (resp. κ-sized) diagrams. If it preserves all limits of internal
functors from internal categories, it is said to be internally continuous.

Proposition 3.24.1. Suppose that F and G form an adjoint pair of anafunctors C Ô D.
Then G is internally continuous.

Proof. Let J : J Ñ D, vlim
ÐÝ

J be as above; let L be a lift of J along ρG, and let c and sc be

any object in C and a lift of it in UF . Then:

HomCpc, τGvlim
ÐÝ

Jq » HomDpτF sc, lim
ÐÝ

Jq

» lim
ÐÝ
pHomDpτF sc,´q : J Ñ Sq

» lim
ÐÝ
pHomCpc, τG ˝ Lp´qq : J Ñ Sq

» HomDpc, lim
ÐÝ
pτG ˝ Lqq,

and so by the Yoneda lemma,
τGvlim

ÐÝ
J » lim

ÐÝ
pτG ˝ Lq .

Theorem 3.25. Let G : D Ñ C be an anafunctor on D an internally complete category.
Then G admits a left adjoint F if and only if G is internally continuous and for each c P C0,
Ptpc,Gq has a weakly initial family of objects.

Proof. The proof proceeds as in the case of plain functors, and with all the ingredients we
have so far, we only need to show that with our assumptions, the internal continuity of G
ensures the internal completeness of the categories of points Ptpc,Gq.
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But a diagram J 1 : J Ñ Ptpc,Gq is just a diagram of c-points where the transition maps lie
in the image of the functor, i.e. consists of triangles of the form

τGpvjiq

c

τGpcjkq

τGpvjiÑvjk q

The vji ’s and the transition maps between them form the data of a functor J
L
Ñ DrUGs.

Composing by ρG yields a diagram J “ ρG ˝ L : J Ñ D, so L lifts J , and continuity of G
gives

τGvlim
ÐÝ

J » lim
ÐÝ

τG ˝ L.

Since the diagram J 1 in Ptpc,Gq already makes c into a cone to τG ˝ L, it admits a unique

mediating map to c
p
Ñ lim

ÐÝ
τG ˝ L » τGvlim

ÐÝ
J for any vlim

ÐÝ
J lifting the limit of J in D along

ρG. Since any other cone to J 1 in Ptpc,Gq may be forgotten into a cone to τG ˝ L in C, J 1

has limit p in Ptpc,Gq.

Corollary 3.25.1. In particular, if a definable functor G satisfies the hypotheses of the
theorem, its canonical adjoint anafunctor is definable as well, regardless of the presence of
definable Skolem functions.

3.2 Morita equivalences

In this section we continue assuming that the ambient category S is concrete in the sense
that it admits a faithful left-exact forgetful functor to Set.

Notation 3.26. If f : c Ñ c1 is a map in C and we have an anafunctor F : C Ñ D, then
specifying lifts sc, s

1
c1 of c and c1 lets us (by the full faithfulness of ρF ) uniquely lift f to a

map sc Ñ s1c1 . Previously we’ve suppressed the extra data of sc and s1c1 and have denoted
the lift of f as ρ´1

F pfq; now we write it as

´

f Õ sc, s
1
c1

¯

: sc Ñ s1c1 .

Definition 3.27. An anafunctor F : C Ñ D is a Morita equivalence if both ρF and τF are
full, faithful and surjective on objects.

Definition 3.28. An anafunctor F : C Ñ D is an anaequivalence if τ is full, faithful, and
surjective on objects.

Remark 3.29. By considerations of Makkai in his paper, this notion of anaequivalence is
equivalent to having a pseudo-inverse anafunctor with isotransformations from the compos-
ites to the identity anafunctors.

25



Definition 3.30. An anafunctor F : C Ñ D is presaturated if for each c P C0 and each
sc P UF lifting c along ρF and each isomorphism φ : τF pscq Ñ d in D, there is some s1dc such
that

φ “ τf

´

idc Õ sc, s
1d
c

¯

.

Definition 3.31. An anafunctor F : C Ñ D is saturated if it is presaturated and addition-
ally the s1dc as in the previous definition is unique.

Definition 3.32. Let F : C Ñ D be an anafunctor. The presaturation F#1 of F is gotten
by follows: we define

UF#1
df
“

ğ

cPC0

 

psdc , φq
ˇ

ˇφ : d
„
Ñ d1

(

»
ğ

dPD0

ğ

sdcPτ
´1
F d

´

d
M

corepDq

¯

0
» UF ˆpτF q0,Y0,s corepDq1,

and given an f : c1 Ñ c2 and its lift

f : c1 Ñ c2 Õ psd1c1 , φ1 : d1 Ñ d11q, ps
d2
c2
, φ2 : d2 Ñ d12q ,

we define τF#1 : CrUF#1 s Ñ D by

´

f Õ psd1c1 , φ1 : d1 Ñ d11q, ps
d2
c2
, φ2 : d2 Ñ d12q

¯

ÞÑ

˜

d11 d1 d2 d12
φ´1
1

fÕs
d1
c1
,s
d2
c2 φ2

¸

.

This is functorial: in case the lift of f is the identity, φ1 and φ2 coincide; if we form the
composition with a lifted g between psd2c2 , φ2q and psc3c3 , φ3q, then φ2 and φ´1

2 cancel in the
middle.

Lemma 3.32.1. The presaturation F#1 of F is presaturated.

Proof. Let c P C0 and psdc , φ : dÑ d1q lift c in UF#1 . Let φ1 : d1 Ñ d2 be an isomorphism. We
require some

`

sd
3

c , φ
2 : d3 Ñ d2

˘

such that

d1 d d3 d2
φ´1 idcÕsdc ,s

d3
c φ2

“ d1
φ1
Ñ d2.

We can take
`

sdc , φ
1 ˝ φ : dÑ d2

˘

.

Definition 3.33. To obtain the saturation F# from the presaturation F#1 , we quotient
UF#1 by the relation

psd1c , φ1q „ ps
1d2
c , φ2q ðñ tpφ1q “ tpφ2q “ d3 and the diagram

d1 d2

d3

φ1

pidcÕsd1c ,s
1d2
c q

φ2
commutes,

and we define the functor τF# : CrUF#s Ñ D the same as we did for the presaturation.

Lemma 3.33.1. If τF is full and faithful, then so is τF#1 , and if τF is essentially surjective
then τF#1 is surjective on objects.
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Proof. Presaturation clearly extends the image of a functor to include everything isomorphic
to anything already in its image, which is the second item. To see the first, just use that
either precomposing or composing by an isomorphism is an isomorphism between contra-
and covariant hom-functors, so in particular induces bijections on hom-sets. Doing both at
the same time amounts to composing one of these bijections after the other, which gives full
faithfulness.

Corollary 3.33.1. Two internal categories are Morita equivalent if and only if they are
anaequivalent if and only if they are presaturated anaequivalent.

Corollary 3.33.2. In addition, if we are working in DefpT q, then if T eliminates imagi-
naries the three conditions above are all also equivalent to being saturated anaequivalent.

4 Internal diagrams in DefpT q

When doing ordinary (small) category theory, i.e. category theory internal to Set, there are
useful functors from those small—internal—categories, to a large—external—one, notably
hom-functors. For example, if we specialize to a group G internal to Set, the contravariant
hom-functor is precisely G’s right action ontiself; similarly, if G is a groupoid instead, its
right action on itself can be construed as a Set-valued functor on G.

An internal diagram generalizes this notion to S-valued functors on categories internal to S.

Definition 4.1. Let S be finitely complete, and let C be an internal category of S. An
internal diagram P : C Ñ S comprises the following data:

(i) An object (abusing notation) P of S, equipped with a map (the anchor map) P
p0
Ñ C0

(interpretation: P is a C0-indexed collection of objects, i.e. p0 gives the object part of
the functor C Ñ S), and

(ii) an action map C1 ˆs,C0,p0 P
p1
Ñ P (interpretation: this describes the morphism part of

the functor C Ñ S),

subject to the following conditions:

(i) The diagram

C1 ˆs,C0,p0 P P

C1 C0

p1

p0

t

commutes. (Interpretation: the image of a point p P P fibered over c P C0 under a
map cÑ c1 will be fibered over c1.)
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(ii) The diagram

C1 ˆs,C0,p0 P

P P

p1pi,idP q

idP

commutes. (Interpretation: identities act as identities (so P the functor preserves
them.)

(iii) The diagram

pC1 ˆs,C0,t C1qsπ2,C0,p0
P C1 ˆs,C0,p0 P

C1 ˆs,C0,p0 P

P

pcˆidP q

pidC1
ˆp1q

p1

p1

commutes. (Interpretation: the functor P , i.e. the action map p1, is compatible with
composition.)

As remarked by Johnstone in his section on internal category theory in Topos Theory, internal
diagrams naturally carry the data of their internal categories of points, so we abuse notation
and identify the internal diagram P with its category of points P equipped with an internal
forgetul functor P

p
Ñ C. (So, for example, the action groupoid of a definable group action

is always definable.) In particular, since every internal category has a canonical internal
diagram on itself induced by its action on itself, there is a canonical C-torsor for every
internal category C. In particular, this C-torsor is always definable. What is not always
certain, however (and this is where Barr-exactness, i.e. elimination of imaginaries comes in)
is whether or not there is an “object-of-isomorphism-classes”, i.e. if we can form the quotient
C0 {» .

[NOTE TO SELF: THIS SECTION NEEDS TO BE REWORKED.]

Definition 4.2. (Internal category of points of an internal diagram) Let F be an internal
diagram C Ñ S. We can naturally obtain an internal category F from F as follows: the
object-of-objects is F0, the object-of-morphisms is F0ˆγ0,C0,sC1, the source and target maps
for F are the projection as in the above pullback and the action map from the data of the

internal diagram. Setting γ1
df
“ πC1 as in the above pullback makes pγ0, γ1q into a canonical

projection functor from F Ñ C, and in case S “ Set, F is seen to be the canonical category
of elements of F and γ the canonical projection functor.

Given an internal diagram on an internal category (think: group actions; for example G-
flows are precisely internal diagrams on internal groups in Top which factor through the
inclusion of ComHausTop) we get an analogue of the orbit-stabilizer theorem—in fact, a
direct generalization of it—in the same way that we can write ordinary presheaves as colimits
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of representables, so that the study of internal diagrams on C reduces to the study of the
irreducible internal diagrams on C. These will be the C-torsors.

Proposition 4.2.1. (Internal orbit-stabilizer) [see johnstone]

Proof.

Definition 4.3. If we can form images in the ambient category S, we say that an internal
diagram P : C Ñ S is transitive if the canonical map

Γpp1q Ñ impπPˆP q

is a cover, where Γpp1q is the graph of the action map p1 (gotten as the obvious pullback)
and πPˆP is as in the following pullback square:

C1 ˆC0ˆC0 P ˆ P C1

P ˆ P C0 ˆ C0.

πPˆP ps,tq

p0ˆp0

In more familiar language, this means “for every arrow f : C Ñ C 1, for every p, p1 belonging
to p´1

0 pCq, p
´1
0 pC

1q, there exists some f 1 : C Ñ C 1 such that p1 pf
1, pq “ p1.”

Proposition 4.3.1. Suppose S has images. Then P : C Ñ S is irreducible if and only if it
is transitive.

Proof.

Remark 4.4. To translate this into the definable setting, replace “internal” with “definable”,
“diagram” with “action”, and “exact completion” with “T eq”.

4.1 Categories of definable diagrams and generalized imaginary
sorts

Now we specialize to S “ DefpT q.

Definition 4.5. Analogously to the notation G-Set for the category of G-sets, i.e. of
internal diagrams on a group G viewed as a groupoid internal to Set, we write C-DefpT q
for the category of definable diagrams on a definable category C.

Recall that a Morita morphism between categories is a fully faithful functor which is surjec-
tive on objects.

Definition 4.6. Let F : X Ñ Y be a Morita morphism. Define the functor

p´q Œ F : X-DefpT q Ñ Y-DefpT q
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(“extension along F”) by
´

P
f
Ñ P 1

¯

Œ F
df
“ pP { „q

f{„
ÝÑ pP 1{ „q ,

where

(i) p „ p1 ðñ F pp0ppqq “ F pp0pp
1qq

df
“ y and there exists a σ : p0ppq Ñ p0pp

1q such that

σ “
´

idy Õ p0ppq, p0pp
1q

¯

and p1pσ, pq “ p1; and

(ii) we define f{ „ by identifying f with its graph, i.e. as the canonical pullback Pˆf,P 1,idP 1
P , which is naturally a definable diagram on X when equipped with the product action:

g.pp, fppqq
df
“ pg.p, g.fppq “ fpgppqqq.

Lemma 4.6.1. p´q Œ F , as described, is actually a functor.

Proof. P { „ (resp. P 1) is naturally equipped with the structure of a definable diagram on
Y with

anchor map p0{ „ prpsq
df
“ Fp0ppq (where we have written rps for the „-class of p), and

action map p1{ „ pσ, rpsq
df
“ (for σ : p0{ „ prpsq Ñ y1)

”

p1

´´

σ Õ p0ppq, x

¯

, p
¯ı

„

where x is a lift of y1 along F . To see that the choice of x does not matter, take another x1

which lifts y1 and compute:
”

p1

´´

σ Õ p0ppq, x

¯

, p
¯ı

„
“

”

p1

´´

σ Õ p0ppq, x
1

¯

, p
¯ı

ðñ p1

´

`

idy1 Õ x, x1
˘

˝

´

σ Õ p0ppq, x

¯

, p
¯

“ p1

´´

σ Õ p0ppq, x
1

¯

, p
¯

,

which follows from the functoriality of lifts. Since we’ve already identified f{ „ with its
graph, this also shows that f{ „ is a morphism of definable diagrams over Y.

Furthemore, it’s clear that idP Õ F is again the identity, and that F is compatible with
composition.

We verify that this data satisfies the definition of an internal diagram on Y:

(i)

pg : Fp0ppq Ñ y1, rpsq
”

p1

´

g Õ p0ppq, x
1 , p

¯ı

Fx1

g y1

commutes,
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(ii)
`

idFp0ppq, rps
˘

”

p1

´

idFp0ppq Õ Fp0ppq, x
1 , p

¯ı

rps rps

commutes, and

(iii)

`

pf : y1 Ñ y2, g : Fp0ppq Ñ y1q, rps
˘

´

f,
”

p1

´

g Õ p0ppq, x
1 , p

¯ı¯

`

f ˝ g, rps
˘

”

p1

´

f ˝ g Õ p0ppq, x
2 , rps

¯ı ”

p1

´

f Õ x1, x3 , p1

´

g Õ p0ppq, x
1 , p

¯¯ı

commutes, where x2 and x3 are both arbitrary points in the preimage of y2 under F0.

Definition 4.7. Let F : X Ñ Y be a Morita morphism. Define the functor

p´q Õ F : Y-DefpT q Ñ X-DefpT q

(“lift along F”) by

´

P
f
Ñ P 1

¯

Õ F
df
“

ˆ

P ˆp0,Y0,F0 X0

˙

fˆY0X0
ÝÑ

ˆ

P 1 ˆp10,Y0,F0
X0

˙

,

where as before we have identified f with its graph.

Lemma 4.7.1. p´q Õ F , as described, is actually a functor.

Proof. P ˆp0,Y0,F0 X0 is naturally equipped with the structure of a definable diagram on
X: the anchor map is just the projection πX0 : P ˆp0,Y0,F0 X0 � X0, and the action map
X1 ˆs,X0,πX0

pP ˆp0,Y0,F0 X0q Ñ P ˆp0,Y0,F0 X0 is given by

pg, pp, xqq ÞÑ pp1pF1pgq, pq, tpgqq ,

and it is also easy to see that idP Õ F “ idPˆY0X0 and that p´q Õ F is compatible with
composition.

We verify that this data satisfies the definition of an internal diagram on X:
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(i)
`

g : xÑ x1, pp, xq
˘ `

p1pF pgq, pq, x
1
˘

x1

g x1

commutes,

(ii)

pidx, pp, xqq pp, xq

pp, xq pp, xq

commutes, and

(iii)

`

pf : x1 Ñ x2, g : xÑ x1q, pp, xq
˘ `

f, pp1pF pgq, pq, x
1q
˘

`

f ˝ g, pp, xq
˘ `

p1pF pf ˝ gq, pq, x
2
˘ `

p1pF pfq, p1pF pgq, pqq, x
2
˘

commutes.

Proposition 4.7.1. Let X
F
Ñ Y be a definable functor. If F is a Morita morphism, then F

induces an equivalence of categories

p´q Œ F : X-DefpT q » Y-DefpT q : p´q Õ F .

Proof. Let P be a definable diagram on X. For each y P Y0, extending P along F just
collapses the fibers

`

p´1
0 pxq

˘

xPF´1
0 pyq

(which are all isomorphic) to a single fiber; lifting back

along F takes the product of this single fiber with pxqxPF´1
0 pyq. Let P 1 name the definable

diagram on X that results from this process. The isomorphism ηP : P
„
ÝÑ P 1 is defined by:

Γ pηP q
`

p,
`

rp1s, x
˘˘

ðñ rps “ rp1s and p0ppq “ x.
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We check that pηP qPPX-DefpT q is natural in P : to see

P1 P 11

P2 P 12

f

ηP1

f 1

ηP2

commutes, chase a p P P1, viz.

p prps, p0ppqq

prfppqs, p0ppqq

fppq prfppqs, p0pfppqqq

rf sˆY0X0

,

where the last equality is due to the equivariance of f (i.e. its naturality as a transformation
of functors P1 Ñ P2.)

On the other hand, if we start with P as a definable diagram on Y, lifting P along F
replaces each fiber p´1

0 pyq with F´1
0 pyq-many copies of itself. If x Ñ x1 lifts idY , then

p1 Õ F px Ñ x1, pp, xqq “ pp, x1q, hence extending back along F just collapses the fibers
again. Let P 1 name the result of this process. Define the isomorphism εP : P 1 Ñ P as
follows:

ΓpεP qpp
1, pq ðñ for all pq, xq which project to p1, q = p.

We check that pεP qPPY-DefpT q is natural in P : to see

P 11 P1

P 12 P2

εP1

f 1 f

εP2

commutes, chase a q P P 11, viz.

rpp, xqs p

rpfppq, xqs fppq.

Corollary 4.7.1. Let T interpret a saturated anaequivalence of categories between X and
Y. Then there is an equivalence of categories

iT : X-DefpT q » Y-DefpT q : jT .

Proof. Let the saturated anaequivalence be given by

XrUF s

X Y.

ρF τF

By the previous proposition, we have equivalences

X-DefpT q » XrUF s-DefpT q » Y-DefpT q.
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Theorem 4.8. Suppose T interprets a saturated anaequivalence X Ð XrUF s Ñ Y. Let
TP and TQ be expansions of T by an extra sort P and Q, such that the expansion includes
function symbols pp0, p1q, pq0, q1q and sentences which give P and Q the structures of definable
diagrams on X and Y, respectively. Then if there are interpretations JPQ and JQP

TP TQ

T

JPQ

JQP

of TP and TQ in each other over T such that JPQ pP, p0, p1q “ jTQ pQ, q0, q1q and JQP pQ, q0, q1q “

iTP pP, p0, p1q, then in fact they form a bi-interpretation JPQ : TP » TQ : JQP of TP and TQ
over T .

Proof.

P ÞÑ jTQ pQq “
`

QÕ τF
˘

Œ ρF “
`

Qˆq0.Y0.pτF q0 pXrUF sq0
˘

M

„ρF

ÞÑ piTP pP q ˆX0 X0q
M

„ρF
“ jTP ˝ iTP pP q ,

where we have used that interpretations are logical functors, hence commute with finite

limits and taking images (in this case, under the quotient map p´q
M

„ρF
); the argument

that Q is definably isomorphic to JPQ ˝ JQP pQq is entirely analogous.

We induce the unit η : 1DefpTP q Ñ JQP ˝JPQ by setting the component ηx“Sx of η at any sort
S of T to be the identity, and the component ηP of η at P to be P

„
ÝÑ jTP ˝iTP pP q; for a tuple

of sorts in TP we just take the corresponding tuple of (components of) η. For a definable set
K P DefpTP q of sorts s, we induce ηK by restricting ηś

sPs x“sx
, i.e. by precomposing this by

the canonical identification of K inside
ś

sPs x “s x, and then taking its image.

This is natural precisely when, for any K1
f
Ñ K2,

@k1, k2 P K1, K2,Γpfq
`

k1, k2

˘

ðñ pJQP ˝ JPQΓpfqq
`

ηK1pk1q, ηK2pk2q
˘

.

Since we have at least two constants and therefore definable characteristic maps for definable
sets, this is equivalent to:

@x
`

Kpxq ðñ pJQP ˝ JPQKq pηKpxqq
˘

,

for all definable sets K P DefpTP q. Since η is the identity on anything from a sort of T , this
is equivalent to:

@x P T @p P P
´

Kpx, pq Ø pJQP ˝ JPQKq px, ηP ppq
¯

. (1)

Since ηP is an isomorphism of definable diagrams on X, this already holds for the graphs of
p0 and p1, i.e.

´

|ù p0ppq “ xØ pjTP ˝ iTP p0q pηP ppqq “ x
¯

, and
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´

|ù p1pg, pq “ p1 Ø pjTP ˝ iTP p1q pg, ηP ppqq “ ηP pp
1
q

¯

.

We can see, using an induction on the complexity of formulas, that this is enough: these
graphs (and equality in P , which is preserved by ηP ) are the only new atomic relations, so
p1q holds whenever K is atomic; the class of formulas satisfying p1q is easily seen to be closed
under negation and conjunction, and to see that this class is closed under taking existentials,
let Kpx, pq satisfy p1q, and consider

?

|ù p@xzx, @pzpq
”

Dpx, pqKpx, pq Ø Dpx, ηP ppqq pJQP ˝ JPQKq px, ηP ppqq
ı

.

If prx, rpq P Dpx, pqKpx, pq, then there must exist px, pq such that prxx, rppq P Kpx, pq, which
means prxx, ηP prpqηP ppqq P pJQP˝JPQKq px, ηP ppqq, hence prx, rp P pDx, DηP ppqq pJQP ˝ JPQKq px, pq.

As before, the argument that the counit ε is also natural is entirely analogous, so we have a
bi-interpretation JPQ : TP » TQ : JQP over T , as required.

Corollary 4.8.1. Suppose that X and Y as above are groupoids. Let TP and TQ be the
expansions of T by the generalized imaginary sorts associated to X and Y, so that P and Q
are groupoid torsors of X and Y, respectively. Then TP and TQ are bi-interpretable over T .

Proof. iTP pP q is a torsor of Y and jTQpQq is a torsor of X. We should like interpretations
JPQ : TP Ñ TQ over T and JQP : TQ Ñ TP via P ÞÑ jTQpQq and Q ÞÑ iTP pP q. We check that
these maps preserve sentences and are hence actually interpretations.

For any two modelsMP andMQ of TP and TQ extending a modelMT of T , P pMP q » jTQpMQq

as internal diagrams over the internal category XpMT q in Set. Let ηP name this isomorphism.
Extend ηP to a map η : MP ÑMQ over MT by making it the identity on MT .

We argue as when we showed the naturality of the unit in the proof of the preceding theorem.
We want to say that JPQ and η satisfy

MP |ù Kpyq ðñ MQ |ù JPQpKqpηpyqq

for all formulas K in the language of TP and tuples of points y from MP ; we can separate
variables according to whether their sort is P or from T , and rewrite the above as

MP |ù Kpx, pq ðñ MQ |ù JPQpKqpx, ηP ppqq.

Since ηP is an isomorphism of internal diagrams on XpMT q, this is satisfied when we take
K to be equality in P or the graph relation of p0 or p1. Since these are the only new atomic
relations, the above holds whenever K is atomic. The class of formulas for which the above
holds is clearly closed under negation and conjunction. If the above holds for Kpx, pq for x
and p tuples of points, then

MP |ù pDx, pq
“

Kprx, rp
‰

(where x and p are appropriately-sorted variables and rx and rp are the appropriate truncations
of x and p)

ðñ there exist points (abusing notation) x, p such that MP |ù Kprxx, rppq
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ðñ MQ |ù JPQpKq prxx, ηP prpqηP ppqq ðñ MQ |ù pDx, qq rJPQpKqprx, ηP prpqs ,

where q is a variable of the same sort as ηP ppq (the point), i.e. is precisely JPQppq (the
variable.) In particular this works when x “ x and p “ p, so JPQ induces interpretations
of models MP Ñ MQ for every pair of models MP and MQ extending a model MT of T . In
particular, JPQ preserves those sentences which are true in all models of MP , and hence is
an interpretation TP Ñ TQ over T ; we can argue analogously that JQP is an interpretation
TQ Ñ TP over T , and hence by the theorem, TP and TQ are bi-interpretable over T .

5 The axiom of choice in DefpT q and equivalences of

internal categories

Definition 5.1. An equivalence of categories C » D is the data

`

F : C Ñ D, G : D Ñ C, η : 1C
„
ÝÑ GF, ε : FG

„
ÝÑ 1D

˘

.

Given this data, F and G are said to be pseudo-inverse to each other, and either is said to
form or be part of an equivalence of categories. η is called the unit and ε the counit. The
equivalence is said to be definable if all the data are definable.

With the axiom of choice, a functor F : C Ñ D is part of an equivalence of categories if and
only if it is full, faithful, and essentially surjective. It turns out that the internalization of
this statement to DefpT q is true as well (when all epimorphisms are definable surjections,
otherwise with the regular coverage.)

Theorem 5.2. Every definable surjection in T admits a definable section if and only if every
definable functor F : C Ñ D between definable categories C,D in T which is full, faithful,
and essentially surjective admits a definable pseudoinverse G : D Ñ C which forms with F
a definable equivalence of categories C » D.

Proof. pðq. Let X0
f
Ñ Y0 be a definable surjection. Consider the following categories:

X
df
“

$

’

’

’

&

’

’

’

%

X0 “ X0

X1 “ X0 ˆf,Y0,f X0

s “ π1, t “ π2 (for the above pullback)

c ppx1, x2q, px2, x3qq “ px1, x3q

and

Y
df
“

$

’

’

’

&

’

’

’

%

Y0 “ Y0

Y1 “ Y0

s “ idY0 , t “ idY0
c “ idY0
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and the functor

F : X Ñ Y
df
“

#

F0 “ f : X0 Ñ Y0

F1 “ f ˝ s.

Given a pseudoinverse G : Y Ñ X, we require that

Y0
G0
Ñ X0

F0
Ñ Y0 “ idY0 .

We have a counit isomorphism ε : FG » 1Y, so the diagram

Y1 ˆY1 Y1 Y1

Y1 Y1 ˆY0 Y1

c

pF0˝G0,ε˝tq

pε˝s,idY1q

c

commutes. By definition, this diagram can be rewritten as

Y0 Y0

Y0 Y0

idY0

pε˝t,F0˝G0q

pidY0 ,ε˝s,q

idY0

and since s and t are the identity morphisms, identifying components gives that idY0 “ F0˝G0,
as required.

pñq. If C is a definable category, then its core

corepCq
df
“

#

corepCq0 “ C0,

corepCq1 “ tf P C1

ˇ

ˇ f an isomorphismu

is definable also, with the source and target maps corepsq and coreptq just the restrictions
of s and t from C. A fully faithful essentially surjective definable functor F : C Ñ D must
satisfy:

(i) For each c1, c2 P C0, the induced definable map

HomC pc1, c2q Ñ HomD pF pc1q, F pc2qq

is a bijection, and

(ii) F preserves and reflects isomorphisms, and so restricts to a fully faithful functor be-
tween cores.
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(iii) The map coreptq ˝ πcorepDq1 as in the following diagram involving the pullback square

P corepDq1 corepDq0

corepCq0 corepDq0

πcorepCq0

πcorepDq1

corepsq

coreptq

F0

is a definable surjection.

To construct G, proceed as follows:

Step 1. Take a definable section s1 to coreptq ˝πcorepDq1 . This yields, for each object d P D0,

a cd P C0 and an isomorphism F pcdq
σd
Ñ d.

Step 2. Define G as follows:

G
´

d1
f
Ñ d2

¯

df
“

˜

cd1 cd2
F´1pσ´1

d2
˝f˝σd1q

¸

.

To check functoriality, note that G preserves identities, and let d1
f
Ñ d2

g
Ñ d3. Let cd name

s1 ˝ π»pdq, and let σd name s2pdq. Taking isomorphisms to the F pcdiq, we get the diagram

d1 d2 d3

F pcd1q F pcd2q F pcd3q

f g

σd1 σd2 σd3

and so we see that by the functoriality of F´1 (whence full faithfulness) that G is functorial.
From full faithfulness we also get that F reflects isomorphisms, so that there is always an

isomorphism c » GFc, in fact F´1
´

σ´1
F pcq

¯

. This gives a definable function C0 Ñ C1. To see

this is natural transformation, let c1
f
Ñ c2 be a map in C; then form the square

c1 GF pc1q

c2 GF pc2q

f

F´1
´

σ´1
F pc1q

¯

GFf

F´1
´

σ´1
F pc2q

¯

and note that

GFf
´

F´1σ´1
F pc1q

¯

“ F´1
´

σ´1
F pc2q

˝ f ˝ σF pc1q

¯

˝ F´1
´

σ´1
F pc1q

¯

“ F´1
´

σ´1
F pc2q

˝ f
¯

,

38



so the diagram commutes. On the other hand, if d P D, then FGpdq “ F pcdq, and we already
have a family of isomorphisms tσd : F pcdq Ñ du, and so a definable function D0 Ñ D1. To

see that this is a natural transformation, let d1
f
Ñ d2 be a map in D, and note that by

definition of G,

FGf “ F pcd1q
σd1
Ñ d1

f
Ñ d2

σ´1
d2
Ñ F pcd2q,

so that the diagram

F pcd1q d1

d1

d2

F pcd2q d2

σd1

σd1

ff

σ´1
d2

σd2

evidently commutes. This completes the proof.

Remark 5.3. A pseudoinverse G constructed in this way is also always right adjoint to F .

Remark 5.4. The first part of the above proof actually works for any finitely complete
category C. Carrying out the second part in this generality is much harder. While we can
characterize full faithfulness as a pullback, our characterization of “essentially surjective”
doesn’t translate over as easily: we need an internal notion of core, which may not exist
(though it always does in the definable setting.) If C has “elimination of imaginaries” i.e. is
Barr-exact, then I think this obstruction disappears.

Proposition 5.4.1. When epimorphisms in DefpT q are precisely the definable surjections,
T has definable Skolem functions if and only if T satisfies the external axiom of choice.

Proof. That having definable Skolem functions implies the external axiom of choice is clear.
In the other direction, let φpx, yq be a definable set in T , so that there is a canonical map

φpMx,Myq
πY
ÑMy,

which yields a (partial) section y
s
ÞÑ pfpyq, yq, so that

πX ˝ s : My ÑMy

gives a definable Skolem function for φpx, yq.

Corollary 5.4.1. By the above proof, T admits definable Skolem functions if and only if
every definable surjection admits a definable section.

Proposition 5.4.2. If a theory T defines two constants c1 and c2, then epimorphisms in
DefpT q are precisely the definable surjections.
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Proof. If f is not a surjection, consider the definable set Y 1 Ď
def
Y defined by

Y 1
df
“ ty P Y

ˇ

ˇ Ex s.t. fpxq “ yu,

and the functions

g1 : Y Ñ tc1, c2u by

#

y ÞÑ c1 if y P Y 1,

y ÞÑ c2 if y P Y zY 1

and
g2 : Y Ñ tc1, c2u by y ÞÑ c2.

Since g1 and g2 are definable, g1 ˝ f “ g2 ˝ f and g1 ‰ g2.

Definition 5.5. Let C be a category. A skeleton of C is a full subcategory C1 of C such
that C 10 meets each »-class of C0 exactly once.

Question 5.6. It’s known that the syntactic category of a first-order theory is a Heyting
category, and so base-change functors have right adjoints. When all these right adjoints pre-
serve epimorphisms, the ambient category satisfies the internal axiom of choice: all objects
are internally projective. What does this mean in model-theoretic terms?

6 A remark on notions of groupoid torsor

The notion of a category torsor we have used gives, when specialized to groupoids, a some-
what different notion of a groupoid torsor than the one used elsewhere. Here I explain the
relation between the two, and show that they coincide in the case that seems to be the only
one that shows up in practice.

Definition 6.1. A category is connected if for every two objects X, Y in the category, there
is a map X Ñ Y .

Definition 6.2. Let G be a groupoid and let C be a category with terminal object 1. A
G-torsor in C is a faithful functor G Ñ C such that for each connected component G0 of
G, Pt p1C, F æG0q is connected.

Definition 6.3. Let G be a small groupoid and let Y be a set. A G-torsor over Y comprises
the data

¨

˚

˚

˚

˚

˚

˝

P

Y

π , a : P ÝÑ G0, p´ ¨ ´q : G1 ˆs,G0,a P ÝÑ P

˛

‹

‹

‹

‹

‹

‚

where P is a set over Y , a is called the anchor map, and p´ ¨ ´q is called the action map
with pg ¨ ´q : P Ñ P an automorphism of P over Y for each g P G1. Furthermore, we must
have that:
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For all p1, p2 P P such that πpp1q “ πpp2q, there exists a unique g P G1 such that g ¨ p1 “ p2.

When G is small, there is a natural way to turn G-torsors F in Set{Y into G-torsors over
Y : take

P
df
“

ğ

xPG0

F pxq “ tpp, xq with x naming which F pxq p comes fromu, π : P Ñ Y the disjoint union of the projections from each component,

appp, xqq
df
“ x,

and

g ¨ pp, xq
df
“

#

F pgqppq if x “ dompgq

identity otherwise.

Remark 6.4. However, neither of these notions of G-torsor subsumes the other.

Example 6.5. Let G be a groupoid with more than one connected component. Consider
the G-set P Ñ G0 where P is the disjoint union of all automorphism groups of G and the
action between fibers are just equivariant bijections of H-sets, where H is the automorphism
group of the relevant connected component. This is a G-torsor in Set{1. However, any two
points in different connected components will still be fibered over the same element, so this
does not give a G-torsor over 1.

Example 6.6. Let G “ BZ (i.e. the groupoid with one object which carries Z as its
automorphism group), and consider the action Z ñ Z\ Z, i.e. the coproduct of the action
of Z on itself with itself in Z-Set. This is a BZ-torsor over 2, but not a BZ-torsor in Set{2:
pick any two sections 2 Ñ Z \ Z such that the two points of one section are a different
distance apart than the two points of the other.

Proposition 6.6.1. Let G0{ » denote the connected components of G, and suppose G is
small. Then a G-torsor in Set is equivalent to a G-torsor over G0{ » with π canonical.

Proof. Let F be a G-torsor in Set. Take

P
df
“

ğ

xPG0

F pxq “ tpp, xq with x naming the F pxq where p comes fromu, π : P Ñ G0{ » by πppp, xqq
df
“ rxs»,

appp, xqq
df
“ x,

and

g ¨ pp, xq
df
“

#

F pgqppq if x “ dompgq,

identity otherwise.

To satisfy the last requirement for being a G-torsor over Y , fix p1 and p2 belonging to F px1q

and F px2q for some x1, x2 P G0 in the same connected component. Then there are sections
s1 : Y Ñ F px1q and s2 : Y Ñ F px2q where everything points at p1 and p2, so by definition
there is some g : x1 Ñ x2 such that F pgq ˝ s1 “ s2, hence F pgqpp1q “ p2. Since F is faithful,

the restriction of F to the subcategory on x1 is a transitive group action, so for any x1
f
Ñ x2,
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F pfq is either fixed-point-free or the identity. Hence, for any g1 : x1 Ñ x2, g1 and g must
either disagree at all points or coincide everywhere. Hence, our g is unique.

On the other hand, given the data of a G-torsor over G0{ » with the canonical projection
π, build F as follows: if x1 and x2 both lie in the same connected component c, then define

F
´

x1
g
Ñ x2

¯

df
“

¨

˚

˚

˚

˝

a´1px2q a´1px2q

tcu

pÞÑg¨p
˛

‹

‹

‹

‚

,

which is easily checked to be functorial. To see that F is transitive, note that if F pg1q “

F pg2q, then they must agree at some point, and hence g1 “ g2 by the uniqueness clause
of the second notion of G-torsors. Now let s1 and s2 be sections 1 » tcu

s1
Ñ F px1q and

1 » tcu
s2
Ñ F px2q, for x1 and x2 both in some connected component c. Then there exists (a

unique) g : x1 Ñ x2 with F pgq ˝ s1 “ s2.

7 Ends and coends

7.1 Dinatural and extranatural transformations

8 Nerve and realization

Definition 8.1. The simplex category ∆ has objects finite ordinals rns
df
“ t0, . . . , nu, 0 ă

n P ω, and morphisms order-preserving maps between them.

Definition 8.2. A simplicial object X‚ of a category S is a functor X : ∆op Ñ S. We
write Xn for Xprnsq and Xf : Xn Ñ Xm for the map Xpfq gotten by applying X to a map
f : rms Ñ rns in ∆.

A category C internal to S is a truncated simplicial object of S. There is a universal simplicial
object of S whose truncation to n “ 0 and n “ 1 is again C. This is the nerve.

Definition 8.3. The nerve of an internal category C of S is the simplicial object NervepCq
of S, given by

NervepCqn
df
“ C1 ˆC0 ˆC0 . . . (n times) ˆC0 C1,

(so composable n-tuples of morphisms in C), and for f : rms Ñ rns in ∆,

pNervepCqf : NervepCqn Ñ NervepCqmq
df
“

¨

˚

˝

¨

˚

˝

φ0
...

φn´1

˛

‹

‚

ÞÑ

¨

˚

˝

ϕ0
...

ϕm´1

˛

‹

‚

ÞÑ c

¨

˚

˝

ϕ0
...

ϕm´1

˛

‹

‚

“

¨

˚

˝

ψ0
...

ψm´1

˛

‹

‚

˛

‹

‚

where ϕj is the n-tuple of maps (padded with identity maps as necessary) φfpi`1q´1, . . . , φfpiq,
and c is (repeated) composition applied to each of the rows.
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Hence, if S “ Set, NervepCqf would be given by

´

X0
φ0
Ñ . . .

φn´1
Ñ Xn

¯

ÞÑ

´

Xfp0q
ψ0
Ñ . . .

ψm´1
Ñ Xfpmq

¯

(the definition above works in any finitely complete category S.)

Remark 8.4. In particular, the nerve of a definable category is a simplicial definable set.
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