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1 Basic definitions

1.1 Notation and conventions

• If C is a category, and X and Y are objects of C, we will write

CpX, Y q

for the set of morphisms X Ñ Y in C.

• If X is a topological space, we will write OpXq for its poset of open subsets, viewed as
a category.

• If V is an open subset of X, by an open covering of V we mean a family of open

subsets

"

Ui Ď V
ˇ

ˇUi Ď
open

X

*

iPI

such that
Ť

iPI Ui “ V .

• We will say that a poset is filtered if it is a directed set: for any finite number of
elements x1, . . . , xn in the poset, there is an x such that for all i “ 1, . . . , n, x ě xi. A
poset which satisfies the dual condition will be called cofiltered.
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• To us, “left-exact” and “right-exact” mean “preserves finite limits” and “preserves
finite colimits”, and “continuous” and “cocontinuous” mean “preserves small limits”
and “preserves small colimits”. When we are working in the context of functors between
abelian categories, “left-exact” and “right-exact” will also stipulate additivity.

1.2 Sheaves and presheaves on a topological space

Let X be a topological space.

Definition 1.1. A presheaf P on X is a contravariant functor

P : OpXqop
Ñ Set.

Example 1.2. Any contravariant hom-functor OpXqp´, Uq is a presheaf on X. It takes the
value 1 “ tHu (meaning “containment”) on open subsets V Ď U and the value 0 “ H on
open subsets V Ę U .

Definition 1.3. Every inclusion of open subsets U Ď V is sent by a presheaf P to a map
P pV q Ñ P pUq. We call this map the restriction map from P pV q to P pUq, and write it as
resV,U .

Definition 1.4. The open neighborhoods of a single point x P X form a neighborhood
filter tU

ˇ

ˇU Q xu. These form a cofiltered diagram. Applying a presheaf P to this cofil-
tered diagram yields (whence contravariance) a filtered diagram. The filtered colimit of this
diagram

lim
ÝÑ

"

P pUq resP pU 1q

ˇ

ˇ

ˇ

ˇ

U Ě U 1 Q x

*

is called the stalk of P at the point x, and is denoted Px.

Definition 1.5. Let P be a presheaf on X. Let V be an open subset of X, and let tUiuiPI
be an open covering of V . A matching family for P with respect to this covering of V is
an I-indexed sequence

psi P P pUiqqiPI

such that for all Ui, Uj and W Ď pUi X Ujq,

resUiXUj ,W psiq “ resUiXUj ,W psjq.

Definition 1.6. A sheaf F on X is a presheaf on X which satisfies the following additional
condition: for every open subset V Ď X, for every open covering tUiuiPI of V , and for every
matching family psiqiPI for P with respect to this covering of V , there exists a unique element
s P P pV q “amalgamating” the matching family, i.e.

@i P I resV,Ui
psq “ si. (1)

Proposition 1.7. An equivalent formulation of the sheaf condition 1 is: for every open
subset V of X, and for every open covering tUi Ñ V uiPI of V , the diagram

FpV q Ñ
ź

iPI

FpUiq Ñ
ź

j,kPI

FpUj X Ukq (2)
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is an equalizer.

Proof. Suppose first that F uniquely amalgamates matching families. Fix V and an open
covering tUiuiPI of V . We will exhibit the universal property of the equalizer diagram.

If Y is a set which is a cocone to

ź

iPI

FpUiq Ñ
ź

j,kPI

FpUj X Ukq,

via
Y

d
Ñ

ź

iPI

FpUiq,

then we need to obtain a unique limiting map c : Y Ñ FpV q.

Each element y P Y determines via d a tuple dpyq “ pdpyqrisqiPI of elements, one from each
FpUiq. Since Y was a cocone, dpyq is a matching family with a unique amalgamation sy. So,
we send y ÞÑ sy.

This is easily seen to be a cone map Y Ñ FpV q. This map is unique because amalgamations
are unique: if we had a different map c1, then it would follow that there is a matching family
which two different amalgamations.

Conversely, suppose that F satisfies the sheaf condition in the sense of 2. A matching family
psiqiPI is a singleton cone tpsiqiPIu to the equalizer diagram. The uniqueness of the limiting
map tpsiqiPIu Ñ FpV q is then literally the uniqueness of the amalgamation.

Definition 1.8. A morphism or map of presheaves f : P1 Ñ P2 is a natural transformation
P1 Ñ P2 viewed as contravariant functors OpXqop Ñ Set.

Example 1.9. Let E
p
Ñ X be a local homeomorphism. Then assigning each U Ď

open
X to

the set of sections (continuous functions s : U Ñ E such that p ˝ s restricts to the identity
map on U) with restriction maps literally restriction maps gives a sheaf U ÞÑ ΓpU,Eq, called

the sheaf of sections of the local homeomorphism E
p
Ñ X.

If E
p
Ñ X and E 1

q
Ñ X are two local homeomorphisms and f : E Ñ E 1 is a map of spaces

over X, then composing by f sends sections to sections and induces a morphism of sheaves

Γp´, Eq
f
Ñ Γp´, E 1q.

Definition 1.10. The presheaves on X with presheaf morphisms between them form a
category PShvpXq. They contain as a full subcategory the category ShvpXq of sheaves on
X.

There is a canonical way of turning presheaves into sheaves, by “freely adjoining unique
amalgamations”, called sheafification. One way of writing it down is to construct from
every presheaf P on X a local homeomorphism EpP q

p
Ñ X, where

˜

EpP q “
ğ

xPX

Px

¸

� X
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is topologized by pulling back the topology on X along the obvious projection. The sheafi-
fication rP of P is then defined to be the sheaf of sections Γp´, EpP qq.

Definition 1.11. Let F be a sheaf on X. Viewing X as an open subset of itself and
borrowing the terminology from the above example, we say that the set FpXq is the set of
global sections of F , and we write

ΓpX,Fq df
“ FpXq.

Since global sections is an evaluation operation on a category of functors, it is (1) purely
formal, so must apply to presheaves, and (2) is functorial by simply taking the component-
at-X of natural transformations: we therefore define the global sections functor

ΓpX,´q : PShvpXq Ñ Set

by
´

P1
η
Ñ P2

¯

ΓpX,´q
ÞÑ

´

ΓpX,P1q
ηX
Ñ ΓpX,P2q

¯

.

This is easily seen to restrict to a functor ΓpX,´q : ShvpXq Ñ Set, which we also call global
sections.

Proposition 1.12. Let 1 be the constant sheaf which sends an open subset U to the terminal
set 1. There is a natural isomorphism of functors

PShvpXqp1,´q » ΓpX,´q.

Proof. Exercise.

Remark 1.13. Precomposing PShvpXqp1,´q and ΓpX,´q : PShvpXq Ñ Set by the
forgetful functor ShvpXq Ñ PShvpXq yields ShvpXqp1,´q and ΓpX,´q : ShvpXq Ñ Set,
so the proposition 1.12 implies that these two functors are naturally isomorphic too.

1.3 Sheaves of groups and sheaves of abelian groups

Definition 1.14. The finite product theory of groups is a category TGrp with objects

1, G,GˆG,GˆGˆG, . . .

corresponding to all finite products (including the empty product 1) of a distinguished ob-
ject G. The maps include all canonical projections between the objects, and the following
additional maps:

1. A map e : 1 Ñ G (“identity”),

2. A map p´q´1 : GÑ G (“inverse”),

3. A map m : GˆGÑ G (“multiplication”).

These maps make the following diagrams commute:
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(Multiplication is associative:)

GˆGˆG GˆG

GˆG G

idGˆM

mˆidG m

m

(Identity is an identity:)

G GˆG

GˆG G

pe,idGq

idG
pidG,eq m

m

(Inverse map is inverse map:)

G GˆG

GˆG G

idG
`

p´q´1,idG

˘

`

idG,p´q
´1
˘

m

m

Definition 1.15. The finite product theory of abelian groups is a category TAb which
looks like TGrp except the extra structure on G must obey the obvious commutativity con-
straint. So, letting τ : G ˆG Ñ G ˆG be the “twist” map which interchanges coordinates
(it is easy to obtain this diagramatically from the universal property of GˆG), we ask that
the data e, p´q´1,m additionally satisfy that the diagram

Multiplication is commutative:

GˆG GˆG

G
m

τ

m

commutes.

Definition 1.16. A group object in ShvpXq is a left-exact functor TGrp Ñ ShvpXq. The
distinguished object G P TGrp is sent by the functor to a sheaf G on X, which by abuse of
notation we also call a group object.

An abelian group object in ShvpXq is, similarly, a left-exact functor TAb Ñ ShvpXq.

Remark 1.17. Since limits in ShvpXq are computed “pointwise”, an (abelian) group object
G in ShvpXq is the same thing as a sheaf G : OpXqop Ñ Set which factors into a sheaf
landing in Grp (or Ab) composed by the forgetful functor to Set.

Exercise 1.18. Verify that Set is isomorphic to Shvp1q, the category of sheaves on the
terminal topological space 1. Verify that Grp is the category of group objects in Shvp1q
and Ab is the category of abelian group objects in Shvp1q.
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Exercise 1.19. Write down the notion of a morphism of abelian group objects in a category
with finite limits. (Hint: it should be a natural transformation of functors from TAb!). Verify
that this gives the correct definition of an abelian group homomorphism when the finitely
complete category is taken to be Set. Verify that the category AbpShvpXqq of abelian
group objects in ShvpXq with morphisms of abelian group objects between them forms an
abelian category.

Lemma 1.20. The global sections functor

ΓpX,´q » ShvpXqp1,´q : ShvpXq Ñ Set

is left-exact.

Proof. This follows from the easily-checked fact that covariant hom-functors CpA,´q pre-
serve small limits.

Remark 1.21. Since ΓpX,´q is left-exact, composition sends abelian group objects L :
TAb Ñ ShvpXq to abelian group objects of Set, which are just abelian groups:

TAb
L
Ñ ShvpXq

ΓpX,´q
Ñ Set.

Therefore, global sections restricts to a functor between categories of abelian group objects,
and we have the following diagram:

AbpShvpXqq ShvpXq

Ab Set

Γ
AbpShvpXqq
Ab pX,´q

forget
AbpShvpXqq
ShvpXq

Γ
ShvpXq
Set pX,´q

forgetAb
Set

Proposition 1.22. The global sections functor

ΓpX,´q
AbpShvpXqq
Ab : AbpShvpXqq Ñ Ab

preserves small limits, so it is left exact. It is also an additive functor between abelian
categories.

Proof. Let D be a diagram in AbpShvpXqq. Since forget : Ab Ñ Set is a right adjoint
and preserves limits, and limits in AbpShvpXqq are computed “pointwise”, the forgetful
functor forget : AbpShvpXqq Ñ ShvpXq is left-exact. We also have that global sections
ShvpXq Ñ Set is left-exact. We therefore calculate:

forgetAb
Set Γ

AbpShvpXqq
Ab pX, lim

ÐÝ
Dq “ Γ

ShvpXq
Set pX, forget

AbpShvpXqq
ShvpXq lim

ÐÝ
Dq

» Γ
ShvpXq
Set pX, lim

ÐÝ
forget

AbpShvpXqq
ShvpXq Dq

» lim
ÐÝ

´

Γ
ShvpXq
Set pX, forget

AbpShvpXqq
ShvpXq Dq

¯

“ lim
ÐÝ

´

forgetAb
Set Γ

AbpShvpXqq
Ab pX,Dq

¯

» forgetAb
Set lim

ÐÝ

´

Γ
AbpShvpXqq
Ab pX,Dq

¯

.
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Since the isomorphisms in the above calculation arise just from moving lim
ÐÝ

around, it is easy

to see that the composite isomorphism

forgetAb
Set Γ

AbpShvpXqq
Ab pX, lim

ÐÝ
Dq » forgetAb

Set lim
ÐÝ

´

Γ
AbpShvpXqq
Ab pX,Dq

¯

is actually the identity map; it is a map of limit cones because limits in ShvpXq (and
hence AbpShvpXqq) are computed pointwise. Since the identity map is always a group
homomorphism,

Γ
AbpShvpXqq
Ab pX, lim

ÐÝ
Dq » lim

ÐÝ

´

Γ
AbpShvpXqq
Ab pX,Dq

¯

.

That taking global sections is an additive functor boils down to the fact that the Ab-
enrichment of AbpShvpXqq is done “pointwise”: when showing AbpShvpXqq is abelian, one
defines the sum η ` ρ of two abelian sheaf homomorphisms η, ρ : A Ñ B as simply the
componentwise sum of the abelian group homomorphisms ηU , ρU : ApUq Ñ BpBq.

2 Sheaf cohomology via injective resolutions

To define sheaf cohomology, we will be using injective resolutions. First, we will show that
these are in ready supply.

2.1 AbpShpXqq has enough injectives

Definition 2.1. Let C be a category, and let X be an object of C. We say that X is an

injective object of C if for any monomorphism Y
i
Ñ Z, and a map Y

f
Ñ X, there exists

some extension g of f along i such that the diagram
Y Z

X

f

i

g
commutes.

Definition 2.2. We say that a category C has enough injectives if for every object A,
there exists a monomorphism AÑ X with X injective.

Theorem 2.3. AbpShvpXqq has enough injectives.

Proof. We will take as given the fact that Ab has enough injectives.

Let F be a sheaf of abelian groups on X. For each x P X, consider the stalk Fx and an
embedding of Fx into an injective abelian group Ix. Form the skyscraper sheaf

ĂIx df
“ U ÞÑ

#

Ix if x P U

0 if x R U.

where 0 is the trivial abelian group; we set resV,U to be the terminal map to 0 if V contains
x but U doesn’t; if U contains x then so does V , in which case resV,U is idIx ; and finally, if
neither V nor U contains x, then resV,U is just id0.
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Claim. AbpShvpXqqpF ,ĂIxq » Ab pFx, Ixq .

Proof of claim. Any natural transformation η : F Ñ ĂIx turns Ix into a cocone over
the filtered diagram tFpUq

ˇ

ˇU Q xu and thus induces a map ηx : Fx Ñ Ix.

We see that η ÞÑ ηx is injective: if η and η1 satisfy that ηx “ η1x, then computing Fx as
the quotient

Fx “
Ů

UQxFpUq
M

`

u » u1 ðñ they eventually restrict to the same element
˘

means that each component ηU and η1U are constant on the equivalence classes induced
by this quotient, and agree on each equivalence class. Since the equivalence classes in
particular partition each FpUq, η “ η1.

We see also that the map η ÞÑ ηx is surjective: given a map c : Fx Ñ Ix, we lift it by

decreeing that for u P FpUq, ηUpuq
df
“ cprusq, where rus is the germ of rus. This is easily

checked to be componentwise a map of abelian groups, and is therefore an element of
AbpShvpXqqpF ,ĂIxq.

The claim implies that ĂIx is an injective sheaf: given an injectivity diagram, we can just
pass to the stalk at x and then obtain an extension by lifting the extension between stalks
along the isomorphism we just constructed, viz.

F G

ĂIx

i

f
η

Ø

Fx Gx

Ix.

ix

fx ηx

One problem remains, however: while there is always some map η : F Ñ ĂIx (corresponding
to the injection ηx : F ãÑ Ix, whence our assumption when we obtained Ix), it is not
necessarily a monomorphism of sheaves. This is because outside of the neighborhood filter
of x, the components of η collapse to terminal maps.

The solution to this problem will be the same as when one exhibits that there are enough
injective abelian groups: we define

I df
“

ź

xPX

ĂIx

(remember that limits of sheaves are computed pointwise!). It is easy to see that an arbitrary
product of injective objects is injective, and easy also to see that the corresponding product
map

˜

ź

xPX

ηx

¸

: F Ñ I

is injective at every component. Hence, AbpShvpXqq has enough injectives.
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2.2 Defining sheaf cohomology

Now, we will define sheaf cohomology for sheaves of abelian groups on X.

Definition 2.4. Let F be a sheaf of abelian groups on X. An injective resolution of F
is a sequence of embeddings

0 Ñ F Ñ I0 Ñ I1 Ñ ¨ ¨ ¨ .

Since AbpShvpXqq has enough injectives, an injective resolution may be constructed for
any sheaf of abelian groups F by iteratively applying the construction from the proof of the
theorem 2.3 to cokernels.

Definition 2.5. Let F be a sheaf of abelian groups. Let n ě 0. Fix an injective resolution
0 Ñ F Ñ I0 Ñ I1 Ñ ¨ ¨ ¨ of F . Apply the global sections functor ΓpX,´q to this resolution
and chop off the first term to obtain the complex

0 Ñ ΓpX, I0q
δ0
Ñ ΓpX, I1q

δ1
Ñ ΓpX, I2q Ñ ¨ ¨ ¨ .

The nth cohomology group HnpX,Fq of F (or alternately, of X with values in F) is
defined to be the homology of this complex:

Hn
pX,Fq df

“ kerpδnq
M

impδn´1q .

Theorem 2.6. The previous definition 2.5 is independent of the choice of injective resolu-
tion.

Proof. We will show that, given two injective resolutions pIiqiPω and pJiqiPω of F , then there
exists a chain homotopy equivalence between the complexes

0 Ñ ΓpX, I0q Ñ ΓpX, I1q Ñ ΓpX, I2q Ñ ¨ ¨ ¨

and
0 Ñ ΓpX,J0q Ñ ΓpX,J1q Ñ ΓpX,J2q Ñ ¨ ¨ ¨ ,

and chain homotopy equivalences induce isomorphisms in chain homology, which is what we
want.

Since the global sections functor ΓpX,´q : AbpShvpXqq Ñ Ab is additive, it preserves the
chain homotopy condition, so it suffices to exhibit a chain homotopy between the truncated
complexes

p0 Ñ I0 Ñ I1 Ñ ¨ ¨ ¨ q » p0 Ñ J0 Ñ J1 Ñ ¨ ¨ ¨ q .

We inductively obtain a sequence of maps Φk : Jk Ñ Ik, as in the diagram

0 F I0 I1 ¨ ¨ ¨

0 F J0 J1 ¨ ¨ ¨

idF Φ0 Φ1
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as follows: Φ0 is the extension of the composite map (going from bottom left, then up, then
right) F Ñ I0 along the embedding F ãÑ J0, and generally one obtains Φk : Jk Ñ Ik by
checking that Φk extends in a well-defined way to a map from the cokernel coker pJk´1 Ñ Jkq
to Jk`1. Then one inductively applies injectivity.

Arguing symmetrically, we obtain a chain map pΨk : Ik Ñ JkqkPω.

We will show how to construct the chain homotopy Φ ˝ Ψ » idI ; the rest of the argument
will follow from symmetry.

It remains to exhibit chain homotopy maps hn, as in the following diagram:

0 I0 I1 ¨ ¨ ¨

0 I0 I1 ¨ ¨ ¨

h0

δ0

h1

δ1

h2

δ0 δ1

(where the vertical maps at each Ik are meant to be pΦ ˝Ψqk and idIk), satisfying the chain
homotopy condition:

@n P ω, pΦ ˝Ψqn ´ idn “ δn´1
˝ hn ` hn`1

˝ δn.

One obvious way of obtaining candidate hn’s is by using injectivity. hn should be an extension
of (something) along δn´1 (generally the cokernel of δn´2), so we should have

(something) “ h1
˝ δn´1.

Looking at the chain homotopy condition, it is clear that we should define hn`1 as the
extension (gotten by injectivity) along δn of the map:

pΦ ˝Ψqn ´ idn´δ
n´1

˝ hn.

And h0 is zero, which provides the base of the induction.

3 Acyclic resolutions

Definition 3.1. We say that a sheaf A is acyclic if its cohomology vanishes in degree ě 1.

Definition 3.2. An acyclic resolution of F is a long exact sequence

0 Ñ F Ñ A0 Ñ A1 Ñ A2 ¨ ¨ ¨

such that for all n P ω, An is acyclic.

Theorem 3.3. Let
0 Ñ F Ñ A0

d0
Ñ A1

d1
Ñ ¨ ¨ ¨

be an acyclic resolution of F . Then (with the convention that d´1 “ 0, and writing δk “
ΓpX, dkq,) there are natural isomorphisms

@n, Hn
pX,Fq » ker δn {im δn´1 .

This means that sheaf cohomology can be computed with acyclic resolutions.
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Proof. Recall that any long exact sequence, such as

0 Ñ F d´1

Ñ A0
d0
Ñ A1

d1
Ñ ¨ ¨ ¨

is part of a diagram of interlocking short exact sequences, given by taking cokernels of the

map dl: writing Ck
df
“ cokerpdkq, we have the following diagram

0 0 0 0

F C0

0 F A0 A1 A2 ¨ ¨ ¨

0 C´1

0 0

where the diagonal sequences are short exact.

We will invoke the following important fact, which we leave as an exercise to the conscientious
reader (proofs of this, and of the important “horseshoe lemma”, may be found in [3] or [8].)

Fact 3.4. A short exact sequence 0 Ñ A Ñ B Ñ C in AbpShvpXqq induces a long
exact sequence

0 Ñ AÑ B Ñ C B
´1

Ñ H0
pX,Aq Ñ H0

pX,Bq Ñ H0
pX, Cq B

0

Ñ H1
pX,Aq Ñ ¨ ¨ ¨

Writing out the long exact sequence in cohomology associated to the short exact sequence

0 Ñ F Ñ A0 Ñ C´1 Ñ 0,

and remembering that the Ak are acyclic, we obtain

¨ ¨ ¨ C´1
B´1

Ñ H0
pX,Fq Ñ H0

pX,A0q Ñ H0
pX, C´1q

B0

Ñ H1
pX,Fq Ñ0 Ñ H1

pX, C´1q Ñ ¨ ¨ ¨

. . . Hn´1
pX,Fq Ñ 0 Ñ Hn´1

pX, C´1q
Bn´1

Ñ Hn
pX,Fq Ñ 0 Ñ Hn

pX, C´1q
Bn

Ñ ¨ ¨ ¨

By exactness of the sequence, when n “ 1, we have

H1
pX,Fq » coker pΓpX,A0q Ñ ΓpX, C´1qq ,

and for general n,
Hn
pX,Fq » Hn´1

pX, C´1q
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via the connecting homomorphism Bn´1.

Now, what has happened here is that Hn of F , which appears at the beginning of the short
exact sequence 0 Ñ F Ñ A0 Ñ C´1, is isomorphic by the connecting homomorphism Bn´1

to Hn´1 of C´1, which appears at the end of the short exact sequence.

Since each Ck shows up in two short exact sequences in the short exact sequence decomposi-
tion of the long exact sequence 0 Ñ F Ñ A0 Ñ . . . , once at the end of a sequence and then
at the beginning of the next sequence, we can iterate the above argument. Explicitly, let us
additionally write Bn´1

Ak
for pn ´ 1qth connecting homomorphism in the long exact sequence

associated to the short exact sequence 0 Ñ Ck´2 Ñ Ak Ñ Ck´1 Ñ 0. Then we obtain a chain
of isomorphisms

Hn
pX,Fq

B
n´1
A0
» Hn´1

pX, C´1q
B
n´2
A1
» Hn´2

pX, C0q
B
n´3
A2
» . . .

B1An´2
» H1

pX, Cn´3q.

Arguing as we did for H1pX,Fq, we see that

H1
pX, Cn´3q » coker pΓpX,An´1q Ñ ΓpX, Cn´2qq .

Since the short exact sequences 0 Ñ Cn´2 Ñ An Ñ Cn´1 Ñ 0 interlocked, Cn´2 »

ker pAn Ñ Cn´1q; since ΓpX,´q is left-exact, it commutes with kernels, so

ΓpX, Cn´2q » ker pΓpX,Anq Ñ ΓpX, Cn´1qq .

Now it suffices to show that ker pΓpX,Anq Ñ ΓpX, Cn´1qq is isomorphic to kerpδnq and that
the image of

ΓpX,An´1q Ñ ΓpX, Cn´2q

is isomorphic to impδn´1q; this will give an isomorphism HnpX,Fq with the homology of the
complex 0 Ñ ΓpX,A0q Ñ ¨ ¨ ¨ when n ą 0 (the case n “ 0 is trivial).

We calculate:

kerpδnq “ kerpΓpX, dnqq

» ΓpX, kerpdnqq

» Γ pker pAn Ñ Cn´1qq

» ker
´

ΓpX,Anq
δn
Ñ ΓpX, Cn´1q

¯

,

and since Cn´2 Ñ An was mono, then by the left-exactness of Γ, ΓpX, Cn´2q Ñ ΓpX,Anq is
an injective map of abelian groups. Therefore,

im pΓpX,An´1q Ñ ΓpX, Cn´2qq » im pΓpX,An´1q Ñ ΓpX, Cn´2q Ñ ΓpX,Anqq
» im pΓpX,An´1q Ñ ΓpX,Anqq
» im

`

δn´1
˘

,

and the proof is complete.
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We conclude with an exercise:

Exercise 3.5. Work out the notion of a ring object in ShvpXq and that show that it is the
same thing as a sheaf of rings on X. Given an ring object R in ShvpXq, work out the notion
of an R-module object in ShvpXq.

Verify that the category of R-module objects in ShvpXq (which we’ll just call R-modules)
is an abelian category, and that everything we have done in this document generalizes to
a notion of sheaf cohomology for sheaves of R-modules on X. (Usually the notation for a
sheaf of rings on X is OX , and these things are usually called OX-modules.)

Sanity check: what is the ring object R which realizes AbpShvpXqq as the category of
R-modules on X?

Dually, prove that there exists a forgetful functor from the category ofR-modules to AbpShvpXqq,
simply by forgetting the R-action on every U Ď

open
X.

Finale: now open the nearest copy of Gelfand and Manin’s Methods of Homological Algebra
[5], turn to III.8, behold Theorem 3, and despair at all the work you have done: computing the
sheaf cohomology of an R-module yields the same result as computing the sheaf cohomology
of the underlying sheaf of abelian groups.
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