
Learning cubing heuristics for SAT from DRAT proofs

Jesse Michael Han

University of Pittsburgh
jmh288@pitt.edu

We learn a variable selection heuristic for the cube-and-conquer paradigm in SAT solving
by training the NeuroCore architecture to predict variable occurrence counts in DRAT proofs
of unsatisfiable formulas. We evaluate our models by averaging CDCL runtimes on the sub-
problems produced by branching on their predictions, and also by their average scores in the
Prover-Adversary game against a random adversary. As a baseline, we compare with Z3’s im-
plementation of the march cu variable selection heuristic. Our results indicate that training to
predict DRAT variable counts usually outperforms training to predict occurrence of a variable
in an unsat core. On all three evaluation datasets, our best models outperform march cu on
solution time, and on two, they achieve superior performance on the game-based metric.1

Introduction Cube-and-conquer [?] is a relatively new SAT solving paradigm wherein a
lookahead solver makes expensive, globally-informed decisions on how to partition (cube) a SAT
problem into subproblems, which are then solved (conquered) in parallel by CDCL solvers. It
has been used to prove the unsatisfiability of relatively small (but hard for CDCL) combinatorial
SAT problems [?, ?, ?]. While previous approaches [?, ?, ?, ?] to improving SAT solvers with
neural networks have tried integrating variable and literal selection directly into the run of a
CDCL solver, we propose targeting cubing heuristics, which allow for fewer but more expensive
and impactful decisions.

A cubing heuristic comprises a variable selection heuristic and a cutoff heuristic. After
each variable selection, two new leaves are added to the search tree, corresponding to either
assignment of the variable. After propagating the assignments, the cutoff heuristic examines
the resulting formulas at the leaves and decides whether or not they are easy for CDCL. If it
deems a leaf to be easy (or if it has exceeded a budget of cubes), the cutoff heuristic freezes it.
This process is repeated on the hardest unfrozen leaf. This produces a truncated search tree
whose leaves are the cubes. In our present work, we target only the variable selection heuristic
by querying our models for the top K variables and producing 2K cubes. In practice, this leads
to poor parallelization [?] as K scales due to a few disproportionately hard problems near the
root, so we use K = 1 and K = 3, and evaluate our models by averaged runtime on the leaves.

As observed in unpublished work by Selsam [?], the job of the cutoff heuristic is essentially
to estimate the size of the DPLL search tree beneath a leaf. Knuth [?] showed that the size
of a backtracking search tree can be estimated by the lengths of randomly sampled paths
through the tree. We recast this in terms of playouts in a two-player zero-sum game, known
in the literature as the Prover-Adversary game [?]. At each round, player 1 (Prover) picks an
unassigned variable, and player 2 (Adversary) assigns it. The game ends when either all clauses
are satisfied or some clause is unsatisfied by the trail of assignments. The terminal value of the
game is the number of rounds divided by the number of variables; for an unsat formula, player
1 seeks to minimize this, and player 2 seeks to maximize this. We modify the game so that unit
propagation occurs after every round; then every playout is a path through the DPLL search
tree. Urquhart [?] proved that player 1 has a winning strategy in fewer than K rounds iff there
is a resolution proof of unsat of depth ≤ K. A good policy for player 1 will thus guide the

1https://www.github.com/jesse-michael-han/neurocuber-public/

https://www.github.com/jesse-michael-han/neurocuber-public/

Learning cubing heuristics for SAT from DRAT proofs Han

game towards shallower parts of the search tree where conflicts occur relatively quickly. This is
exactly the behavior we desire from the variable selection heuristic of a cuber. We additionally
evaluate our models with the average terminal value of playouts against a random adversary,
where our models queried at every round for Player 1’s policy. This metric provides a more
robust evaluation of our models’ decisions, as they are queried dozens to hundreds of times per
formula versus only once; also, unlike the timing-based metric, this is unaffected by resource
contention.

DRAT proofs Resolution proofs emitted by SAT solvers quickly become enormous as prob-
lems scale. A DRAT proof [?] emitted by a modern CDCL solver is essentially an extremely
compressed resolution proof: each line in the proof will typically be a learned conflict clause
abbreviating dozens or hundreds of unit propagation steps. DRAT proofs can thus be roughly
thought of as the SAT analogue of a tactic proof script for interactive theorem provers in
higher logics: a list of high-level non-deterministic steps which can be formally linked together
by more primitive automation (unit propagation). The intuition behind our approach is that
DRAT proofs are a readily-available high-quality representation of resolution trees, and if a
variable occurs frequently in a resolution tree, branching on it will correspondingly minimize
the average size of the resolution trees (and proportionally the solving times) for the leaves.

Network architecture, data, and training Our implementation is based on the simplified
NeuroSAT [?] architecture used by Selsam and Bjørner [?] to guide CDCL solvers through
periodic refocusing of EVSIDS scores [?]. They trained a variable scoring head and a clause
scoring head to predict the variables and clauses in a labelled unsat core. Besides minor
modifications to the GNN embedding network, we add another variable scoring head, and train
it to predict occurrence counts of variables in DRAT proofs. The loss function is calculated by
softmaxing the true occurrence counts and logits and taking the forward KL-divergence. We
train to minimize the sum of all three losses . All models are implemented in TensorFlow 2.
We trained on a synthetic dataset src of 250000 problems, based on the problem distributions
SR and SRC described in [?] as follows: first, we extract an unsat core C of size ≥ 20 and
≤ 100 from a problem in SR(20), modified to exclude binary clauses to increase the difficulty
of the core, and then sample a formula from SRC(100, C) which is between 5 to 20 times
larger than C. As a baseline, we also trained a separate model on another dataset sr of 250000
unsatisfiable problems drawn from SR(U(10, 40)). We obtain variable occurrence counts from
DRAT proofs (excluding deletion clauses) emitted by the state-of-the-art CDCL solver cadical
[?], and extract unsat cores by verifying the proofs with drat-trim [?].

Evaluations We evaluate on three datasets ramsey, schur, and vdw of 1000 random sub-
problems each (randomly assigning 5, 35, and 3 variables) of the hard combinatorial problems
Ramsey(4, 4, 18), Schur(4, 45), and vanderWaerden(2, 5, 179). The problems range in size from
∼ 3000 to ∼ 7800 clauses. For timing evaluation, we query each variable selection head of each
model once on the first 250 problems in each dataset, picking the top K = 1, 3 scored variables,
then recording the solving time of the cubes in parallel with as many cores as cubes; we used
cadical as the conqueror. We only queried march cu for K = 1. The runs were performed
serially on a 16-core machine with no other compute-intensive tasks. For random playout eval-
uation, we play 50 matches on all formulas on all datasets and record the average terminal
values and average number of unit propagations after every round. We used the distribution
framework ray to parallelize up to 16 playouts at once per run; all runs were done in parallel
on the PSC Bridges cluster.

2

Learning cubing heuristics for SAT from DRAT proofs Han

src core src drat random march cu

avg terminal value 0.144 0.14 0.192 0.146
avg unit props 1.415 1.471 1.064 1.873

Table 1: Average terminal values and unit propagations for all variable selection heuristics after
50000 playouts vs. a random Adversary on ramsey. Lower terminal values are better.

src core src drat random march cu

ramsey 4.345 4.025 5.248 4.83
schur 1.504 1.517 2.392 1.903
vdw 1.843 1.803 2.215 2.07

Table 2: Averaged wall clock runtimes (in seconds) for top-1 cubing of all variable selection
heuristics. On average, our best heuristics produce an 18% speedup over march cu.

Results We use the naming convention neurocuber-<train dataset> <head> to refer to
our learned variable selection heuristics. On all test datasets, both neurocuber-src drat and
neurocuber-sr drat outperform march cu on top-1 timing evaluation (Table 2). Table 1 shows
the result of random playout evaluation on 1000 subproblems of Ramsey(4, 4, 18). Remarkably,
even though march cu finds significantly more unit propagations than our models, it is still
outperformed by neurocuber-src. The same phenonenon occurs on the schur dataset. Only
on vdw does march cu achieve the best terminal value. Table 3 and Table 4 show the average
percent change in performance of the DRAT-variable over core-variable scoring heads for both
models. On ramsey and vdw, DRAT-variable heads outperformed core-variable heads across all
models and metrics, with significant improvement for neurocuber-sr across the board.

Conclusions and future work The comparative timing performance of our models was
tightly correlated with their terminal scores in the Prover-Adversary game, providing empirical
evidence that good policies for player 1 translate to good variable selection heuristics for cube-
and-conquer. Our experiments show that training to predict DRAT variable counts consistently
yields better variable selections than training to predict the binary occurrence of variables in
unsat cores. Remarkably, on some hard combinatorial problems squarely in the domain of cube-
and-conquer, our strongest models outperform domain-specific heuristics without optimizing as
much for unit propagation. While maximizing the number of expected unit propagations is an
obvious short-range policy in the Prover-Adversary game (and far more sophisticated versions
of this are currently state-of-the-art for cube-and-conquer), our experiments suggest that better
policies can be learned, even through just supervised training on proxy targets. The natural
next step is direct reinforcement learning of the policy and value functions. We will discuss
steps in this direction during our talk.

ramsey schur vdw

top1 timing 24.06 6.3 29.19
top3 timing 55.24 30.31 59.42
random playout 16.38 8.77 5.78

Table 3: Percent improvement of DRAT
over core-var heads for neurocuber-sr.

ramsey schur vdw

top1 timing 7.3 -1.4 2.06
top3 timing 17.42 0.1 9.96
random playout 2.91 -0.54 5.14

Table 4: Percent improvement of DRAT
over core-var heads for neurocuber-src.

3

Learning cubing heuristics for SAT from DRAT proofs Han

Acknowledgements We thank Daniel Selsam and Nikolaj Bjørner for initially suggesting
the approach taken in this paper. This work benefited from conversations with Tom Hales,
Emre Yolcu, Daniel Abolafia, and Ruben Martins. This work was supported by XSEDE start
up grant TG-DMS190028 and grant G-2018-10067 from the Sloan Foundation.

References

[1] Armin Biere. CaDiCaL simplified satisfiability solver. http://fmv.jku.at/cadical/.

[2] Marijn J. H. Heule. The DRAT format and DRAT-trim checker. CoRR, abs/1610.06229, 2016.

[3] Marijn J. H. Heule. Avoiding triples in arithmetic progression. Journal of Combinatorics, 8(3):391–
422, 2017.

[4] Marijn J. H. Heule. Schur number five. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018, pages 6598–6606, 2018.

[5] Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and verifying the Boolean
Pythagorean triples problem via cube-and-conquer. In Theory and Applications of Satisfiability
Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016, Proceed-
ings, pages 228–245, 2016.

[6] Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving very hard problems: Cube-
and-conquer, a hybrid SAT solving method. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages
4864–4868, 2017.

[7] Sebastian Jaszczur, Micha l Luszczyk, and Henryk Michalewski. Neural heuristics for SAT solving.
In Representation Learning on Graphs and Manifolds Workshop at ICLR 2019, 2019.

[8] Donald E Knuth. Estimating the efficiency of backtrack programs. Mathematics of Computation,
29(129):122–136, 1975.

[9] Vitaly Kurin, Saad Godil, Shimon Whiteson, and Bryan Catanzaro. Improving SAT solver heuris-
tics with graph networks and reinforcement learning. arXiv preprint arXiv:1909.11830, 2019.

[10] Gil Lederman, Markus N Rabe, Edward A Lee, and Sanjit A Seshia. Learning heuristics for
automated reasoning through deep reinforcement learning. arXiv preprint arXiv:1807.08058, 2018.

[11] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation Conference,
DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pages 530–535, 2001.

[12] Pavel Pudlák. Proofs as games. The American Mathematical Monthly, 107(6):541–550, 2000.

[13] Daniel Selsam. Neurocuber: training NeuroSAT to make cubing decisions for hard SAT problems.

[14] Daniel Selsam and Nikolaj Bjørner. Guiding high-performance SAT solvers with unsat-core pre-
dictions. In Theory and Applications of Satisfiability Testing - SAT 2019 - 22nd International
Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings, pages 336–353, 2019.

[15] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L.
Dill. Learning a SAT solver from single-bit supervision. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

[16] Alasdair Urquhart. The depth of resolution proofs. Studia Logica, 99(1-3):349, 2011.

[17] Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In Theory and Applications of Satisfiability Testing -
SAT 2014 - 17th International Conference, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 14-17, 2014. Proceedings, pages 422–429, 2014.

4

http://fmv.jku.at/cadical/

