A formal proof of the independence of the continuum hypothesis

Jesse Michael Han

Lean Together 2020

University of Pittsburgh

joint w/ Floris van Doorn

Introduction	Syntax	Forcing	Conclusions
00000	0000	0000000000	
Outline			

Introduction

 Syntax

Forcing

Conclusions

Introduction	Syntax	Forcing	Conclusions
•0000	0000	0000000000	
Lean Together 201	.9		

Towards a formal proof of the independence of the continuum hypothesis

Jesse Han

(joint with Floris van Doorn)

University of Pittsburgh

Lean Together 2019

Introduction	Syntax	Forcing	Conclusions		
0000	0000	000000000	000		
$1 0 n n n \in \mathbb{N}$	/nornasis				

 Posed by Cantor in 19th century: does there exist an infinite cardinality strictly larger than the countable natural numbers N but strictly smaller than the uncountable real numbers ℝ?

• was Hilbert's 1st question

• Proved independent (neither provable nor disprovable) from ZFC by Paul Cohen ('60s) and Kurt Godel ('30s). Cohen's invention of forcing earned him a Fields medal, the only one ever awarded for work in mathematical logic.

Introduction	Syntax	Forcing	Conclusions
0000	0000	000000000	000
Continuum h	vpothesis		

• Independence of CH had never been formalized

Formalizing 100 Theorems

There used to exist a <u>"top 100" of mathematical theorems</u> on the web, which is a rather arbitrary list (and most of the theorems seem rather elementary), but still is nice to look at. On the current page will keep track of which theorems from this list have been formalized. Currently the fraction that already has been formalized seems to be

94%

24. The Undecidability of the Continuum Hypothesis

Introduction	Syntax	Forcing	Conclusions
00000	0000	0000000000	
Continuum hypot	hesis		

• Independence of CH had never been formalized... until now!

formally proving the independence of the continuum hypothesis

Website: flypitch.github.io

- Formalized the independence of CH
- Built reusable libraries for mathematical logic and set theory
- Written in Lean 3.

Introduction	Syntax	Forcing	Conclusions
00000	0000	000000000	000

What is required for the formalization?

To formalize just the **statement**, "the continuum hypothesis is neither provable nor disprovable from ZFC", we need:

- Syntax: first-order logic (terms, formulas, quantifiers, sentences...)
- provability, i.e. a proof system
- the axioms of ZFC and also CH as first-order formulas

To formalize the **proof**, we need:

- Semantics (ordinary soundness theorem)
- Boolean-valued semantics and soundness for first-order logic
- Boolean-valued models of ZFC
- Forcing

Introduction 00000	Syntax ●○○○	Forcing 000000000	Conclusions
First-order logic			
<pre>structure Language (functions : ℕ (relations : ℕ</pre>	: Type (u+1) := → Type u) → Type u)		
<pre>/- The language of inductive abel_fum zero : abel_func plus : abel_func</pre>	abelian groups -/ ctions : $\mathbb{N} \rightarrow \text{Type}$ tions 0 tions 2		

def L_abel : Language := $\langle \texttt{abel_functions}, (\lambda _, \texttt{empty}) \rangle$

Introduction	Syntax	Forcing	Conclusions
00000	0●00	000000000	
First-order logic			

```
def term := preterm L 0
```

- preterm L n is a partially applied term. If applied to n terms, it becomes a term.
- Every element of preterm L 0 is a well-formed term.
- We use this encoding to avoid mutual or nested inductive types, since those are not too convenient to work with in Lean.

Introduction	Syntax	Forcing	Conclusions
00000	0000	0000000000	
First-order logic			

Similarly for formulas:

```
inductive preformula : \mathbb{N} \to \text{Type u}
| falsum {} : preformula 0 -- notation \bot
| equal (t<sub>1</sub> t<sub>2</sub> : term L) : preformula 0 -- notation \simeq
| rel {l : \mathbb{N}} (R : L.relations l) : preformula 1
| apprel {l : \mathbb{N}} (f : preformula (l + 1)) (t : term L) :
    preformula 1
| imp (f<sub>1</sub> f<sub>2</sub> : preformula 0) : preformula 0 -- notation \Longrightarrow
| all (f : preformula 0) : preformula 0 -- notation \forall'
```

```
def formula := preformula L 0
```

Introduction 00000	Syntax	Forcing 0000000000	Conclusions
First-order logic			

To test our implementation, we formalized the completeness and compactness theorems.

```
theorem completeness {L : Language} (T : Theory L) (\psi : sentence L) : T \vdash' \psi \leftrightarrow T \models \psi
```

```
theorem compactness {L : Language} {T : Theory L} {f : sentence L} :
T \models f \leftrightarrow \exists fs : finset (sentence L), (\uparrowfs : Theory L) \models (f : sentence L) \land \uparrowfs \subseteq T
```

Introduction	Syntax	Forcing	Conclusions
00000	0000	●000000000	000

Forcing goes something like this: given either a poset (of "forcing conditions") \mathbb{P} or a Boolean completion \mathbb{B} of \mathbb{P} , and a transitive ground model *M* of ZFC, one:

- Constructs a class of "names" (P-names or B-names)
- In the case of forcing with generic extensions, one selects a "generic filter" G ⊆ P and uses it to "evaluate" the P-names, producing the forcing extension M[G] which is checked to be a model of ZFC with the desired properties.
- In the case of Boolean-valued models, one works with the B-names directly, as a B-valued model M^B-valued model of ZFC. This becomes the forcing extension.

Introduction	Syntax	Forcing	Conclusions
00000	0000	000000000	000

Major problem for a Lean user: everything is defined set-theoretically, and the set theory seems inextricable from the definition.

1 page into Kunen's chapter on forcing:

Definition 14.1. A set $F \subset P$ is a *filter* on P if

 $\begin{array}{ll} (14.1) & (\mathrm{i}) \ F \ \mathrm{is \ nonempty}; \\ (\mathrm{ii}) \ \mathrm{if} \ p \leq q \ \mathrm{and} \ p \in F, \ \mathrm{then} \ q \in F; \\ (\mathrm{iii}) \ \mathrm{if} \ p, q \in F, \ \mathrm{then \ there \ exists} \ r \in F \ \mathrm{such \ that} \ r \leq p \ \mathrm{and} \ r \leq q. \end{array}$

A set of conditions $G \subset P$ is *generic* over M if

(14.2) (i) G is a filter on P; (ii) if D is dense in P and $D \in M$, then $G \cap D \neq \emptyset$.

We also say that G is M-generic, or P-generic (over M), or just generic.

Introduction	Syntax	Forcing	Conclusions
00000	0000	00000000	000

At first glance, the situation is not much better for Boolean-valued models.

We now suppose given a complete Boolean algebra B, which we will assume to be fixed throughout the rest of this chapter. We also assume that B is a *set*, that is, $B \in V$.

We define the universe $V^{(B)}$ of *B*-valued sets by analogy with (1.2); namely, we define, by recursion on α ,

$$V_{\alpha}^{(B)} = \{ x: \operatorname{Fun}(x) \wedge \operatorname{ran}(x) \subseteq B \land \exists \xi < \alpha [\operatorname{dom}(x) \subseteq V_{\xi}^{(B)}] \}$$
(1.4)

and

$$V^{(B)} = \{ x : \exists \alpha [x \in V_{\alpha}^{(B)}] \}.$$
(1.5)

Introduction	Syntax	Forcing	Conclusions
00000	0000	00000000	000

- Naiive approach: fix a model of ZFC in Lean, then replicate forcing arguments verbatim, *inside the model*. (Yikes).
- During formalization, do forcing arguments have to be carried out internally to a model of set theory?
- Answer: No!
- Use Boolean-valued approach to avoid generic filters.
- Key observation: the definition of V^B (equivalently, the name construction) is naturally implemented as an inductive type generalizing the Aczel construction of a model of ZFC from a universe of types.

Introduction	Syntax	Forcing	Conclusions
00000	0000	000000000	
A model of 750 in			

A model of ZFC in Lean

The following construction is due to Aczel:

```
inductive pSet : Type (u+1)
| mk (\alpha : Type u) (A : \alpha \rightarrow pSet) : pSet
```

- Note that mk empty empty.elim always exists, and corresponds to the empty set at the bottom of the von Neumann hierarchy.
- (Extensional) equivalence can be defined by structural recursion (the elimination principle for the inductive type pSet is ∈-recursion): Two pre-sets are extensionally equivalent if every element of the first family is extensionally equivalent to some element of the second family and vice-versa.

Introduction	Syntax	Forcing	Conclusions
00000	0000	000000000	000

The name construction done right

We add a third field to the constructor pSet.mk, so that all nodes of the tree are furthermore annotated with elements of \mathbb{B} ("Boolean truth-values")

```
inductive bSet (\mathbb{B} : Type u)

[complete_boolean_algebra \mathbb{B}] : Type (u+1)

| mk (\alpha : Type u) (A : \alpha \rightarrow bSet) (B : \alpha \rightarrow \mathbb{B}) : bSet
```

Note:

- When B is the singleton algebra unit, bSet unit is isomorphic to pSet.
- bSet B is exactly V^B (i.e. the name construction; bSet B comprises the "B-names".)

Introduction 00000	Syntax 0000	Forcing 00000000000	Conclusions

The name construction

Compare with the set-theoretic definition of \mathbb{P} -names (Kunen):

2.5. DEFINITION. τ is a IP-name iff τ is a relation and

 $\forall \langle \sigma, p \rangle \in \tau \ [\sigma \text{ is a IP-name } \land p \in \mathbf{IP}]. \square$

This definition does not mention models or any order on \mathbb{P} . The collection of \mathbb{P} -names will be a proper class if $\mathbb{P} \neq 0$.

Definition 2.5 must be understood as a definition by transfinite recursion. Formally, one defines the characteristic function of the IP-names, $H(IP, \tau)$, by

 $\mathbf{H}(\mathbf{I}\mathbf{P},\tau) = 1 \text{ iff } \tau \text{ is a relation } \land \forall \langle \sigma, p \rangle \in \tau [\mathbf{H}(\mathbf{I}\mathbf{P},\sigma) = 1 \land p \in \mathbf{I}\mathbf{P}].$

 $H(\mathbb{I}, \tau) = 0$ otherwise.

Introduction	Syntax	Forcing	Conclusions
00000	0000	0000000000	000

Boolean-valued models of set theory

In bSet \mathbb{B} , (\mathbb{B} -valued) equality is defined by structural recursion:

def bv_eq : \forall (x y : bSet), bool -- notation '=^B | $\langle \alpha, \mathbf{A}, \mathbf{A}' \rangle \langle \beta, \mathbf{B}, \mathbf{B}' \rangle$:= \prod a : α , \mathbf{A}' a $\Longrightarrow \bigsqcup$ b : β , \mathbf{B}' b \sqcap bv_eq (A a) (B b) $\sqcap \prod$ b : β , \mathbf{B}' b $\Longrightarrow \bigsqcup$ a : α , \mathbf{A}' a \sqcap bv_eq (A a) (B b)

 $\begin{array}{l} \texttt{def mem} : \texttt{bSet } \mathbb{B} \to \texttt{bSet } \mathbb{B} \to \mathbb{B} \text{ --notation } `\in^{B`} \\ \mid \texttt{a} (\texttt{mk} \; \alpha' \; \texttt{A}' \; \texttt{B}') := \bigsqcup \texttt{a}', \; \texttt{B}' \; \texttt{a}' \sqcap \texttt{a} = \Ba' \; \texttt{A}' \; \texttt{a}' \end{array}$

and (\mathbb{B} -valued) membership is defined from equality; together, these induce an assignment of truth-values (in \mathbb{B}) to all sentences in the language of ZFC.

Theorem. For every \mathbb{B} , **bSet** \mathbb{B} is a **Boolean-valued model** of ZFC.

Introduction	Syntax	Forcing	Conclusions
00000	0000	00000000●0	
High-level overview	N		

- The usual argument for the independence of CH goes like this:
 - Force \neg CH using the Cohen poset, producing a model where CH is false, so \neg CH is consistent with ZFC, i.e. CH is unprovable from ZFC.
 - Gödel showed that CH is true in the constructible universe L, so CH is consistent with ZFC, i.e. ¬CH is unprovable from ZFC.
- In our formalization, we:
 - Force ¬CH using Boolean-valued models, i.e. by using a Boolean completion B_{cohen} of the Cohen poset and verifying that ¬CH has truth-value ⊤ in bSet B_cohen.
 - Instead of constructing L, we also force CH via collapse forcing, again with Boolean-valued models, i.e. by verifying that the truth value of CH is ⊤ in bSet B_collapse.

Introduction	Syntax	Forcing	Conclusions
00000	0000	00000000●	
High-level overviev	M		

- To do forcing, we must analyze combinatorial properties of B or a densely-embedded poset P presenting B, and determine how these properties influence the set-theoretic behavior of bSet B.
- This entails studying how the structure of \mathbb{B} induces relationships between e.g. Lean's cardinals/ordinals (equivalence classes of types) with the internal cardinals/ordinals of **bSet** \mathbb{B} .
- Required development of elementary set theory (ordinals, etc) internal to bSet B.
- Altogether, most technically involved part of the formalization.

Introduction		Syntax	Forcing	Conclusions
00000		0000	0000000000	•00
	~ ·			

Timeline of project

- June 2018: saw Freek's list
- September 2018: started project
- October 2018: Floris joins, first-order logic + soundness theorem
- November 2018: Completeness theorem
- February 2019: Definition of bSet
- March 2019: Cohen forcing and unprovability of CH
- June 2019: Start on collapse forcing
- August 2019: Finish collapse forcing and unprovability of ¬CH (except construction of ℵ1),
- September 2019: Construct \aleph_1 , finish independence of CH

Total time: 1 year, 4 days

Introduction	Syntax	Forcing	Conclusions
00000	0000	000000000	
Summarv			

- Was it as easy as I hoped? Eventually took 20,000 LOC and 1 year to complete, so maybe not.
- Our translation of the forcing argument into type theory shows that a ground model of set theory is not a prerequisite for forcing. Boolean-valued Aczel sets built out of a universe of types are enough.
- Challenges: many parts of textbook expositions did not have type-theoretic analogues, and the forcing argument for CH via Boolean-valued models is not well-documented.
- Formalization elucidated the proofs, and some parts were even discovered using Lean.
- Domain specific automation is useful; Lean makes it easy to write.

Introduction	Syntax	Forcing	Conclusions
00000	0000	000000000	
Summary			

Thank you!

- flypitch.github.io
- https://www.github.com/flypitch/flypitch