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Continuum hypothesis

e Posed by Cantor in 19th century: does there exist an infinite
cardinality strictly larger than the countable natural numbers N but
strictly smaller than the uncountable real numbers R?

e was Hilbert's 1st question

e Proved independent (neither provable nor disprovable) from ZFC by
Paul Cohen ('60s) and Kurt Godel ('30s). Cohen's invention of
forcing earned him a Fields medal, the only one ever awarded for
work in mathematical logic.
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Continuum hypothesis

e Independence of CH had never been formalized

Formalizing 100 Theorems

There used to exist a on the web, which
is a rather arbitrary list (and most of the theorems seem rather elementary),

but still is nice to look at. On the current page = will keep track of which
theorems from this list have been formalized. Currently the fraction that
already has been formalized seems to be

94%

24. The Undecidability of the Continuum Hypothesis
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Continuum hypothesis

e Independence of CH had never been formalized. .. until now!

FLYPITCH

formally proving the independence of the continuum hypothesis

Website: flypitch.github.io

e Formalized the independence of CH
e Built reusable libraries for mathematical logic and set theory

e Written in Lean 3.


https://flypitch.github.io

Introduction Syntax Forcing Conclusions
[eJele] ) 00000 0000000000000 0 [e]e]

What is required for the formalization?

To formalize just the statement, "the continuum hypothesis is neither
provable nor disprovable from ZFC", we need:

e Syntax: first-order logic (terms, formulas, quantifiers, sentences. . .)
e provability, i.e. a proof system
e the axioms of ZFC and also CH as first-order formulas
To formalize the proof, we need:
e Semantics (ordinary soundness theorem)
e Boolean-valued semantics and soundness for first-order logic
e Boolean-valued models of ZFC

e Forcing
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First-order logic

structure Language : Type (utl) :=
(functions : N — Type u)
(relations : N — Type u)

/- The language of abelian groups -/
inductive abel_functions : N — Type
| zero : abel_functions 0O

| plus : abel_functions 2

def L_abel : Language := (abel_functions, (A _, empty))
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First-order logic

inductive preterm : N — Type u

| var : V (k : N), preterm O -- notation &

| func : V {1 : N} (£ : L.functions 1), preterm 1

| app : V {1 : N} (¢t : preterm (1 + 1)) (s : preterm 0),
preterm 1

def term := preterm L O

e preterm L n is a partially applied term. If applied to n terms, it
becomes a term.

e Every element of preterm L 0 is a well-formed term.

e We use this encoding to avoid mutual or nested inductive types,
since those are not too convenient to work with in Lean.
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First-order logic

Similarly for formulas:

inductive preformula : N — Type u

| falsum {} : preformula 0 -- notation L

equal (ti1 t» : term L) : preformula O -- notation ~

|

| rel {1 : N} (R : L.relations 1) : preformula 1

| apprel {1 : N} (f : preformula (1 + 1)) (t : term L)
preformula 1

| imp (f1 f» : preformula 0) : preformula O -- notation —

| all (f : preformula 0) : preformula O -- notation V'

def formula := preformula L O
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First-order logic

To test our implementation, we formalized the completeness and
compactness theorems.

theorem completeness {L : Language} (T : Theory L) (¢ :
sentence L) : T+ ¢ <« T = 9

theorem compactness {L : Language} {T : Theory L} {f : sentence
L} :
TE f < J fs : finset (sentence L), ({fs : Theory L) E (f
sentence L) A 1fs € T
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VA ®

We conservatively extend ZFC with additional constant/function symbols:

* J

ordered pairing function (—, —)

)

natural numbers w

e powerset operation P(—)

e union operation | J(—)

We formulate CH as follows:

Vx, (x is an ordinal) — x < w v P(w) < x

where x < y means there exists a surjection from a subset of y onto x

10
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Generic extensions vs Boolean-valued models

Forcing goes something like this: given either a poset (of "forcing
conditions") P or a Boolean completion B of P, and a transitive ground
model M of ZFC, one:

e Constructs a class of "names" (P-names or B-names)

e In the case of forcing with generic extensions, one selects a "generic
filter" G < IP and uses it to "evaluate" the P-names, producing the
forcing extension M|[G] which is checked to be a model of ZFC with
the desired properties.

o In the case of Boolean-valued models, one works with the B-names
directly, as a B-valued model M® of ZFC. This becomes the forcing
extension.

11
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Generic extensions vs Boolean-valued models

Major problem for a Lean user: everything is defined set-theoretically, and
the set theory seems inextricable from the definition.

1 page into Kunen's chapter on forcing:

Definition 14.1. A set FF C P is a filter on P if

(14.1) (i) F is nonempty;
(ii) if p < g and p € F, then g € F;
(iii) if p,q € F, then there exists r € F such that » < p and r < ¢.

A set of conditions G C P is generic over M if

(14.2) (i) G is a filter on P;
(1) if Disdensein P and D € M, then GND # ().

We also say that G is M-generic, or P-generic (over M), or just generic.

12
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The name construction

Similarly for the set-theoretic definition of P-names (Kunen):

2.5. DEFINITION. 7 is a IP-name iff t is a relation and

Y{o,p>et[oisalP-name A pelP]. O

This definition does not mention models or any order on IP. The collection
of IP-names will be a proper class if [P # 0.

Definition 2.5 must be understood as a definition by transfinite recursion.
Formally, one defines the characteristic function of the IP-names, H(IP, 1),
by

H(IP,7) = 1 iff zisarelation A V{a,p)>et[H(P,0) =1 A pelP].
H(P, 1) = 0 otherwise.

13
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Generic extensions vs Boolean-valued models

At first glance, the situation is not much better for Boolean-valued
models.

We now suppose given a complete Boolean algebra B, which we will assume
to be fixed throughout the rest of this chapter. We also assume that B is a set,
that is, B e V.

We define the universe V(5] of B-valued sets by analogy with (1.2); namely,
we define, by recursion on «,

VB = {2 Fun(z) A ran(z) C B A 3¢ < a|dom(z) C VE[B)]} (14)
and

VB = {z:3alz € V;ﬁB)]}. (1.5)

14
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Generic extensions vs Boolean-valued models

e Naiive approach: fix a model of ZFC in Lean, then replicate forcing
arguments verbatim, inside the model. (Yikes).

e During formalization, do forcing arguments have to be carried out
internally to a model of set theory?

e Answer: No!

e Use Boolean-valued approach to avoid generic filters.

e Key observation: the definition of V2 (equivalently, the name
construction) is naturally implemented as an inductive type
generalizing the Aczel construction of a model of ZFC from a
universe of types.

15
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A model of ZFC in Lean

The following construction is due to Aczel:

inductive pSet : Type (u+l)
| mk (o : Type u) (A : a — pSet) : pSet

e Note that mk empty empty.elim always exists, and corresponds to
the empty set at the bottom of the von Neumann hierarchy.

e (Extensional) equivalence can be defined by structural recursion (the
elimination principle for the inductive type pSet is €-recursion): Two
pre-sets are extensionally equivalent if every element of the first
family is extensionally equivalent to some element of the second

family and vice-versa.

16
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The name construction done right

We add a third field to the constructor pSet.mk, so that all nodes of the
tree are furthermore annotated with elements of B ("Boolean
truth-values")

inductive bSet (B : Type u)
[complete_boolean_algebra B] : Type (ut+1l)
| mk (o : Type w) (A : a — bSet) (B : @« — B) : bSet

e When B is the singleton algebra unit, bSet unit is isomorphic to
pSet.

e There is a canonical map x — X from pSet to bSet B.

e bSet B is exactly VB (i.e. the name construction; bSet B comprises
the "B-names".)

Conclusions

17
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Boolean-valued models of set theory

In bSet B, (B-valued) equality is defined by structural recursion:

\ _B\

def bv_eq : V (x y : bSet B), B -- notation =

| {a,A,A") (3,B,B") :=[]a:a, a= ||b: 3, B bnr bv_eq
(Aa) B m []b: B, B b= ]]a:a, ' anbv_eq (4
a) (B b)

def mem : bSet B — bSet B — B --notation ‘€’
| a (mk o A" B) :=|]a', BB a ma="4A2a

and (B-valued) membership is defined from equality; together, these
induce an assignment of truth-values (in B) to all sentences in the

language of ZFC.

Theorem. For every B, bSet B is a Boolean-valued model of ZFC.

18
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High-level overview

e The usual argument for the independence of CH goes like this:
e Force —CH using the Cohen poset, producing a model where CH is
false, so —=CH is consistent with ZFC, i.e. CH is unprovable from
ZFC.
e Godel showed that CH is true in the constructible universe L, so CH
is consistent with ZFC, i.e. —CH is unprovable from ZFC.

e In our formalization, we:

e Force —CH using Boolean-valued models, i.e. by using a Boolean
completion Beohen of the Cohen poset and verifying that —CH has
truth-value T in bSet B_cohen.

e Instead of constructing L, we also force CH via collapse forcing,
again with Boolean-valued models, i.e. by verifying that the truth
value of CH is T in bSet B_collapse.

19



Introduction Syntax Forcing Conclusions

0000 00000 000000000800 00 [e]e]

High-level overview

e To do forcing, we must analyze combinatorial properties of B or a
densely-embedded poset P presenting B, and determine how these
properties influence the set-theoretic behavior of bSet B.

e This entails studying how the structure of B induces relationships
between e.g. Lean’s cardinals/ordinals (equivalence classes of types)
with the internal cardinals/ordinals of bset B.

pSet — X=X, pSet B

ordinal.mk

ordinal.{u}

e Requires some basic set theory (ordinals, Ny, etc) internal to bSet B.

20
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External approximations to new functions

e Particular choices of B affect how subsets are formed in bSet B.

e For Cohen forcing, B_cohen is the algebra of regular open sets of the
Cantor space 282*%

e To each v € Ny, we can attach a new Cohen real, i.e. a new subset
of w given by the indicator function An, {g : 2%2*% | g(v, n) = 1}

e Induces an injection Ny <> P(w) in bSet B_cohen.

e For collapse forcing, bSet B_collapse is the regular open algebra of
the function space 81 — P(w).

e To every (1, S) € N; x P(w), we attach the principal open set of all
functions 8; — P(w) sending v to S.

e This gives rise to an indicator function on N; x P(w), checked to be
the graph of a surjection ¥; — P(w) in bSet B_collapse.

21



Introduction Syntax Forcing Conclusions
0000 00000 0000000000000 00

Automation for boolean-valued logic

Old and busted:

example {B} [complete_boolean_algebra B] {a b c : B} :
(a=b)n(b=c) <a= c :=
begin
rw [ <« deduction, inf_comm, < inf_assoc ],
transitivity b m (b = c¢),
{ refine le_inf _ _,
{ apply inf_le_left_of_le, rw inf_comm, apply mp I},
{ apply inf_le_right_of_le, refl 1}},
{ rw inf_comm, apply mp }

end

22
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Automation for boolean-valued logic

New hotness:

example {B} [complete_boolean_algebra B] {a b ¢ : B} :
(a=—=Db)mn(b=c) <a=— c:=
by { tidy_context, bv_tauto } -- B-walued tableauz prover

/- ‘tidy_context\ repeatedly applies the Yoneda lemma for posets
iie.a<beoe VI, I<a-—->TIT<hb

tactic state before final step:
abcl_1: B,

lr’1 : B :=an G,

a_l_left : .1 < a =— b,
a_l_right : _.1 < b = c,
H:T.1<a

FTr1<c-/

23
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Automation for boolean-valued logic

e This technique also exposes a family of setoids on bSet B induced
by B-valued equality: for every I, Ax y,I < x =P y is an
equivalence relation.

e If the remainder of a proof is just equality reasoning (mod B), we
can just quotient by the setoid and run congruence closure.

example {a b ¢ d e : bSet B} :
@=b) 1 =) (c=d n@=Pe) <a=Pe:=

by tidy_context; bv_cc

example {x; y1 x2 y2 : bSet B} {I'}
(H :FT<x ¥ y) (B : T <x1 =% x)
(H, : T

/

N

y1 =B y2) : [ < % eB y2 := by bv_cc

24
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Summary

e Was it as easy as | hoped? Eventually took 20,000 LOC and 1 year
to complete, so maybe not.

e Our translation of the forcing argument into type theory shows that
a ground model of set theory is not a prerequisite for forcing.
Boolean-valued Aczel sets built out of a universe of types are
enough.

e Challenges: many parts of textbook expositions did not have
type-theoretic analogues, and the forcing argument for CH via
Boolean-valued models is not well-documented.

e Formalization elucidated the proofs, and some parts were even
discovered using Lean.

e Domain specific automation is useful; Lean makes it easy to write.

25
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Summary

Thank you!

e flypitch.github.io
e https://www.github.com/flypitch/flypitch

26
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