
A formal proof of the independence of the
continuum hypothesis

Jesse Michael Han and Floris van Doorn

CPP 2020

University of Pittsburgh



Introduction Syntax Forcing Conclusions

Outline

Introduction

Syntax

Forcing

Conclusions

1



Introduction Syntax Forcing Conclusions

Continuum hypothesis

• Posed by Cantor in 19th century: does there exist an infinite
cardinality strictly larger than the countable natural numbers N but
strictly smaller than the uncountable real numbers R?

• was Hilbert’s 1st question

• Proved independent (neither provable nor disprovable) from ZFC by
Paul Cohen (’60s) and Kurt Godel (’30s). Cohen’s invention of
forcing earned him a Fields medal, the only one ever awarded for
work in mathematical logic.

2



Introduction Syntax Forcing Conclusions

Continuum hypothesis

• Independence of CH had never been formalized

3



Introduction Syntax Forcing Conclusions

Continuum hypothesis

• Independence of CH had never been formalized. . . until now!

Website: flypitch.github.io

• Formalized the independence of CH

• Built reusable libraries for mathematical logic and set theory

• Written in Lean 3.

4

https://flypitch.github.io


Introduction Syntax Forcing Conclusions

What is required for the formalization?

To formalize just the statement, "the continuum hypothesis is neither
provable nor disprovable from ZFC", we need:

• Syntax: first-order logic (terms, formulas, quantifiers, sentences. . . )

• provability, i.e. a proof system

• the axioms of ZFC and also CH as first-order formulas

To formalize the proof, we need:

• Semantics (ordinary soundness theorem)

• Boolean-valued semantics and soundness for first-order logic

• Boolean-valued models of ZFC

• Forcing

5



Introduction Syntax Forcing Conclusions

First-order logic

structure Language : Type (u+1) :=
(functions : N Ñ Type u)
(relations : N Ñ Type u)

/- The language of abelian groups -/
inductive abel_functions : N Ñ Type
| zero : abel_functions 0
| plus : abel_functions 2

def L_abel : Language := xabel_functions, (λ _, empty)y

6



Introduction Syntax Forcing Conclusions

First-order logic

inductive preterm : N Ñ Type u
| var : @ (k : N), preterm 0 -- notation &
| func : @ {l : N} (f : L.functions l), preterm l
| app : @ {l : N} (t : preterm (l + 1)) (s : preterm 0),

preterm l

def term := preterm L 0

• preterm L n is a partially applied term. If applied to n terms, it
becomes a term.

• Every element of preterm L 0 is a well-formed term.

• We use this encoding to avoid mutual or nested inductive types,
since those are not too convenient to work with in Lean.

7



Introduction Syntax Forcing Conclusions

First-order logic

Similarly for formulas:

inductive preformula : N Ñ Type u
| falsum {} : preformula 0 -- notation K
| equal (t1 t2 : term L) : preformula 0 -- notation »
| rel {l : N} (R : L.relations l) : preformula l
| apprel {l : N} (f : preformula (l + 1)) (t : term L) :

preformula l
| imp (f1 f2 : preformula 0) : preformula 0 -- notation ùñ
| all (f : preformula 0) : preformula 0 -- notation @1

def formula := preformula L 0

8



Introduction Syntax Forcing Conclusions

First-order logic

To test our implementation, we formalized the completeness and
compactness theorems.

theorem completeness {L : Language} (T : Theory L) (ψ :
sentence L) : T $1 ψ Ø T ( ψ

theorem compactness {L : Language} {T : Theory L} {f : sentence
L} :

T ( f Ø D fs : finset (sentence L), (Òfs : Theory L) ( (f :
sentence L) ^ Òfs Ď T

9



Introduction Syntax Forcing Conclusions

ZFC

We conservatively extend ZFC with additional constant/function symbols:

• H

• ordered pairing function p´,´q

• natural numbers ω

• powerset operation Pp´q
• union operation

Ť

p´q

We formulate CH as follows:

@x, (x is an ordinal) ùñ x ď ω _ P(ω) ď x

where x ď y means there exists a surjection from a subset of y onto x

10



Introduction Syntax Forcing Conclusions

Generic extensions vs Boolean-valued models

Forcing goes something like this: given either a poset (of "forcing
conditions") P or a Boolean completion B of P, and a transitive ground
model M of ZFC, one:

• Constructs a class of "names" (P-names or B-names)

• In the case of forcing with generic extensions, one selects a "generic
filter" G Ď P and uses it to "evaluate" the P-names, producing the
forcing extension MrG s which is checked to be a model of ZFC with
the desired properties.

• In the case of Boolean-valued models, one works with the B-names
directly, as a B-valued model MB of ZFC. This becomes the forcing
extension.

11



Introduction Syntax Forcing Conclusions

Generic extensions vs Boolean-valued models

Major problem for a Lean user: everything is defined set-theoretically, and
the set theory seems inextricable from the definition.

1 page into Kunen’s chapter on forcing:

12



Introduction Syntax Forcing Conclusions

The name construction

Similarly for the set-theoretic definition of P-names (Kunen):

13



Introduction Syntax Forcing Conclusions

Generic extensions vs Boolean-valued models

At first glance, the situation is not much better for Boolean-valued
models.

14



Introduction Syntax Forcing Conclusions

Generic extensions vs Boolean-valued models

• Naiive approach: fix a model of ZFC in Lean, then replicate forcing
arguments verbatim, inside the model. (Yikes).

• During formalization, do forcing arguments have to be carried out
internally to a model of set theory?

• Answer: No!

• Use Boolean-valued approach to avoid generic filters.

• Key observation: the definition of V B (equivalently, the name
construction) is naturally implemented as an inductive type
generalizing the Aczel construction of a model of ZFC from a
universe of types.

15



Introduction Syntax Forcing Conclusions

A model of ZFC in Lean

The following construction is due to Aczel:

inductive pSet : Type (u+1)
| mk (α : Type u) (A : α Ñ pSet) : pSet

• Note that mk empty empty.elim always exists, and corresponds to
the empty set at the bottom of the von Neumann hierarchy.

• (Extensional) equivalence can be defined by structural recursion (the
elimination principle for the inductive type pSet is P-recursion): Two
pre-sets are extensionally equivalent if every element of the first
family is extensionally equivalent to some element of the second
family and vice-versa.

16



Introduction Syntax Forcing Conclusions

The name construction done right

We add a third field to the constructor pSet.mk, so that all nodes of the
tree are furthermore annotated with elements of B ("Boolean
truth-values")

inductive bSet (B : Type u)
[complete_boolean_algebra B] : Type (u+1)

| mk (α : Type u) (A : α Ñ bSet) (B : α Ñ B) : bSet

• When B is the singleton algebra unit, bSet unit is isomorphic to
pSet.

• There is a canonical map x ÞÑ x̌ from pSet to bSet B.

• bSet B is exactly V B (i.e. the name construction; bSet B comprises
the "B-names".)

17



Introduction Syntax Forcing Conclusions

Boolean-valued models of set theory

In bSet B, (B-valued) equality is defined by structural recursion:

def bv_eq : @ (x y : bSet B), B -- notation 8=B8

| xα,A,A1
y xβ,B,B1

y :=
Ű

a : α, A1 a ùñ
Ů

b : β, B1 b [ bv_eq
(A a) (B b) [

Ű

b : β, B1 b ùñ
Ů

a : α, A1 a [ bv_eq (A
a) (B b)

def mem : bSet B Ñ bSet B Ñ B --notation 8
P
B8

| a (mk α1 A1 B1) :=
Ů

a1, B1 a1
[ a =B A1 a1

and (B-valued) membership is defined from equality; together, these
induce an assignment of truth-values (in B) to all sentences in the
language of ZFC.

Theorem. For every B, bSet B is a Boolean-valued model of ZFC.

18



Introduction Syntax Forcing Conclusions

High-level overview

• The usual argument for the independence of CH goes like this:
• Force  CH using the Cohen poset, producing a model where CH is

false, so  CH is consistent with ZFC, i.e. CH is unprovable from
ZFC.

• Gödel showed that CH is true in the constructible universe L, so CH
is consistent with ZFC, i.e.  CH is unprovable from ZFC.

• In our formalization, we:
• Force  CH using Boolean-valued models, i.e. by using a Boolean

completion Bcohen of the Cohen poset and verifying that  CH has
truth-value J in bSet B_cohen.

• Instead of constructing L, we also force CH via collapse forcing,
again with Boolean-valued models, i.e. by verifying that the truth
value of CH is J in bSet B_collapse.

19



Introduction Syntax Forcing Conclusions

High-level overview

• To do forcing, we must analyze combinatorial properties of B or a
densely-embedded poset P presenting B, and determine how these
properties influence the set-theoretic behavior of bSet B.

• This entails studying how the structure of B induces relationships
between e.g. Lean’s cardinals/ordinals (equivalence classes of types)
with the internal cardinals/ordinals of bSet B.

pSet bSet B

ordinal.{u}

x ÞÑx̌

ordinal.mk

• Requires some basic set theory (ordinals, ℵ1, etc) internal to bSet B.

20



Introduction Syntax Forcing Conclusions

External approximations to new functions

• Particular choices of B affect how subsets are formed in bSet B.

• For Cohen forcing, B_cohen is the algebra of regular open sets of the
Cantor space 2ℵ2ˆω.

• To each ν P ℵ2, we can attach a new Cohen real, i.e. a new subset
of ω given by the indicator function λn, tg : 2ℵ2ˆω | gpν, nq “ 1u

• Induces an injection ℵ̌2 ãÑ Ppωq in bSet B_cohen.

• For collapse forcing, bSet B_collapse is the regular open algebra of
the function space ℵ1 Ñ Ppωq.

• To every pν, Sq P ℵ̌1 ˆ
ˇPpωq, we attach the principal open set of all

functions ℵ1 Ñ Ppωq sending ν to S .

• This gives rise to an indicator function on ℵ̌1 ˆ
ˇPpωq, checked to be

the graph of a surjection ℵ̌1 � ˇPpωq in bSet B_collapse.

21



Introduction Syntax Forcing Conclusions

Automation for boolean-valued logic

Old and busted:

example {B} [complete_boolean_algebra B] {a b c : B} :
( a ùñ b ) [ ( b ùñ c ) ď a ùñ c :=

begin
rw [ Ð deduction, inf_comm, Ð inf_assoc ],
transitivity b [ (b ùñ c),

{ refine le_inf _ _,
{ apply inf_le_left_of_le, rw inf_comm, apply mp },
{ apply inf_le_right_of_le, refl }},

{ rw inf_comm, apply mp }
end

22



Introduction Syntax Forcing Conclusions

Automation for boolean-valued logic

New hotness:

example {B} [complete_boolean_algebra B] {a b c : B} :
( a ùñ b ) [ ( b ùñ c ) ď a ùñ c :=

by { tidy_context, bv_tauto } -- B-valued tableaux prover

/- 8tidy_context8 repeatedly applies the Yoneda lemma for posets
i.e. a ď b Ø @ Γ, Γ ď a Ñ Γ ď b

tactic state before final step:
a b c Γ_1 : B,
Γ_1 : B := a [ G,
a_1_left : Γ_1 ď a ùñ b,
a_1_right : Γ_1 ď b ùñ c,
H : Γ_1 ď a
$ Γ_1 ď c -/

23



Introduction Syntax Forcing Conclusions

Automation for boolean-valued logic

• This technique also exposes a family of setoids on bSet B induced
by B-valued equality: for every Γ, λx y , Γ ď x “B y is an
equivalence relation.

• If the remainder of a proof is just equality reasoning (mod B), we
can just quotient by the setoid and run congruence closure.

example {a b c d e : bSet B} :
(a =B b) [ (b =B c) [ (c =B d) [ (d =B e) ď a =B e :=

by tidy_context; bv_cc

example {x1 y1 x2 y2 : bSet B} {Γ}
(H1 : Γ ď x1 P

B y1) (H2 : Γ ď x1 =B x2)
(H2 : Γ ď y1 =B y2) : Γ ď x2 P

B y2 := by bv_cc

24



Introduction Syntax Forcing Conclusions

Summary

• Was it as easy as I hoped? Eventually took 20,000 LOC and 1 year
to complete, so maybe not.

• Our translation of the forcing argument into type theory shows that
a ground model of set theory is not a prerequisite for forcing.
Boolean-valued Aczel sets built out of a universe of types are
enough.

• Challenges: many parts of textbook expositions did not have
type-theoretic analogues, and the forcing argument for CH via
Boolean-valued models is not well-documented.

• Formalization elucidated the proofs, and some parts were even
discovered using Lean.

• Domain specific automation is useful; Lean makes it easy to write.

25



Introduction Syntax Forcing Conclusions

Summary

Thank you!

• flypitch.github.io

• https://www.github.com/flypitch/flypitch

26

flypitch.github.io
https://www.github.com/flypitch/flypitch

	Introduction
	Syntax
	Forcing
	Conclusions

