A formal proof of the independence of the continuum hypothesis

Jesse Michael Han and Floris van Doorn

CPP 2020

University of Pittsburgh

Outline

Introduction

Introduction

Syntax

Forcing

Conclusions

Continuum hypothesis

 Posed by Cantor in 19th century: does there exist an infinite cardinality strictly larger than the countable natural numbers $\mathbb N$ but strictly smaller than the uncountable real numbers \mathbb{R} ?

Forcing

was Hilbert's 1st question

 Proved independent (neither provable nor disprovable) from ZFC by Paul Cohen ('60s) and Kurt Godel ('30s). Cohen's invention of forcing earned him a Fields medal, the only one ever awarded for work in mathematical logic.

Continuum hypothesis

Introduction

000

Independence of CH had never been formalized

Formalizing 100 Theorems

There used to exist a "top 100" of mathematical theorems on the web, which is a rather arbitrary list (and most of the theorems seem rather elementary), but still is nice to look at. On the current page I will keep track of which theorems from this list have been formalized. Currently the fraction that already has been formalized seems to be

94%

24. The Undecidability of the Continuum Hypothesis

Continuum hypothesis

Introduction

0000

• Independence of CH had never been formalized... until now!

formally proving the independence of the continuum hypothesis

Website: flypitch.github.io

- Formalized the independence of CH
- Built reusable libraries for mathematical logic and set theory
- Written in Lean 3.

What is required for the formalization?

To formalize just the statement, "the continuum hypothesis is neither provable nor disprovable from ZFC", we need:

- Syntax: first-order logic (terms, formulas, quantifiers, sentences...)
- provability, i.e. a proof system
- the axioms of ZFC and also CH as first-order formulas

To formalize the proof, we need:

- Semantics (ordinary soundness theorem)
- Boolean-valued semantics and soundness for first-order logic
- Boolean-valued models of ZFC
- Forcing

First-order logic

```
structure Language : Type (u+1) :=
    (functions : \mathbb{N} \to \mathsf{Type}\ \mathbf{u})
    (relations : \mathbb{N} \to Type u)
/- The language of abelian groups -/
inductive abel_functions : \mathbb{N} \to \mathsf{Type}
| zero : abel functions 0
| plus : abel_functions 2
def L_abel : Language := \langle abel\_functions, (\lambda \_, empty) \rangle
```

First-order logic

```
inductive preterm : \mathbb{N} \to \mathsf{Type}\ \mathsf{u}
| var : ∀ (k : N), preterm 0 -- notation &
| func : \forall {1 : \mathbb{N}} (f : L.functions 1), preterm 1
| app : \forall {l : \mathbb{N}} (t : preterm (l + 1)) (s : preterm 0),
     preterm 1
def term := preterm L 0
```

- preterm L n is a partially applied term. If applied to n terms, it becomes a term.
- Every element of preterm L 0 is a well-formed term.
- We use this encoding to avoid mutual or nested inductive types, since those are not too convenient to work with in Lean.

Introduction

Similarly for formulas:

```
inductive preformula : \mathbb{N} \to \mathsf{Type}\ \mathsf{u}
| falsum {} : preformula 0 -- notation \( \precedef{L} \)
| equal (t_1 t_2 : term L) : preformula 0 -- notation \simeq
| rel \{1 : \mathbb{N}\} (R : L.relations 1) : preformula 1
  apprel \{l : \mathbb{N}\}\ (f : preformula\ (l + 1))\ (t : term\ L):
     preformula 1
| imp (f_1 f_2 : preformula 0) : preformula 0 -- notation <math>\Longrightarrow
 all (f : preformula 0) : preformula 0 -- notation \forall'
def formula := preformula L 0
```

Introduction

To test our implementation, we formalized the completeness and compactness theorems.

```
theorem completeness {L : Language} (T : Theory L) (\psi :
    sentence L) : T \vdash' \psi \leftrightarrow T \vDash \psi
theorem compactness {L : Language} {T : Theory L} {f : sentence
   L} :
 sentence L) \land \uparrow fs \subseteq T
```

ZFC

Introduction

We conservatively extend ZFC with additional constant/function symbols:

- Ø
- ordered pairing function (-,-)
- natural numbers ω
- powerset operation $\mathcal{P}(-)$
- union operation (J(−)

We formulate CH as follows:

$$\forall x$$
, (x is an ordinal) $\Longrightarrow x \leqslant \omega \lor P(\omega) \leqslant x$

where $x \leq y$ means there exists a surjection from a subset of y onto x

Forcing goes something like this: given either a poset (of "forcing conditions") \mathbb{P} or a Boolean completion \mathbb{B} of \mathbb{P} , and a transitive ground model M of ZFC, one:

0000000000000

- Constructs a class of "names" (ℙ-names or В-names)
- In the case of forcing with generic extensions, one selects a "generic filter" $G \subseteq \mathbb{P}$ and uses it to "evaluate" the \mathbb{P} -names, producing the forcing extension M[G] which is checked to be a model of ZFC with the desired properties.
- In the case of Boolean-valued models, one works with the B-names directly, as a \mathbb{B} -valued model $M^{\mathbb{B}}$ of ZFC. This becomes the forcing extension.

Introduction

Generic extensions vs Boolean-valued models

Major problem for a Lean user: everything is defined set-theoretically, and the set theory seems inextricable from the definition.

1 page into Kunen's chapter on forcing:

Definition 14.1. A set $F \subset P$ is a *filter* on P if

- (14.1) (i) F is nonempty;
 - (ii) if $p \leq q$ and $p \in F$, then $q \in F$;
 - (iii) if $p, q \in F$, then there exists $r \in F$ such that $r \leq p$ and $r \leq q$.

A set of conditions $G \subset P$ is generic over M if

- (14.2) (i) G is a filter on P;
 - (ii) if D is dense in P and $D \in M$, then $G \cap D \neq \emptyset$.

We also say that G is M-generic, or P-generic (over M), or just generic.

The name construction

Similarly for the set-theoretic definition of \mathbb{P} -names (Kunen):

2.5. DEFINITION. τ is a IP-name iff τ is a relation and

$$\forall \langle \sigma, p \rangle \in \tau \ [\sigma \text{ is a IP-name } \land p \in \mathbf{IP}]. \quad \Box$$

This definition does not mention models or any order on \mathbb{P} . The collection of \mathbb{P} -names will be a proper class if $\mathbb{P} \neq 0$.

Definition 2.5 must be understood as a definition by transfinite recursion. Formally, one defines the characteristic function of the IP-names, $\mathbf{H}(\mathbf{IP}, \tau)$, by

$$\mathbf{H}(\mathbf{IP}, \tau) = 1$$
 iff τ is a relation $\land \forall \langle \sigma, p \rangle \in \tau [\mathbf{H}(\mathbf{IP}, \sigma) = 1 \land p \in \mathbf{IP}].$
 $\mathbf{H}(\mathbf{IP}, \tau) = 0$ otherwise.

Generic extensions vs Boolean-valued models

At first glance, the situation is not much better for Boolean-valued models.

We now suppose given a complete Boolean algebra B, which we will assume to be fixed throughout the rest of this chapter. We also assume that B is a set, that is, $B \in V$.

We define the universe $V^{(B)}$ of B-valued sets by analogy with (1.2); namely, we define, by recursion on α ,

$$V_{\alpha}^{(B)} = \{x: \operatorname{Fun}(x) \wedge \operatorname{ran}(x) \subseteq B \wedge \exists \xi < \alpha [\operatorname{dom}(x) \subseteq V_{\xi}^{(B)}]\}$$
 (1.4)

Forcing 0000000000000

and

$$V^{(B)} = \{x : \exists \alpha [x \in V_{\alpha}^{(B)}]\}. \tag{1.5}$$

Generic extensions vs Boolean-valued models

• Naiive approach: fix a model of ZFC in Lean, then replicate forcing arguments verbatim, inside the model. (Yikes).

00000000000000

- During formalization, do forcing arguments have to be carried out internally to a model of set theory?
- Answer: No!
- Use Boolean-valued approach to avoid generic filters.
- Key observation: the definition of $V^{\mathbb{B}}$ (equivalently, the name construction) is naturally implemented as an inductive type generalizing the Aczel construction of a model of ZFC from a universe of types.

A model of ZFC in Lean

Introduction

The following construction is due to Aczel:

```
inductive pSet : Type (u+1)
| mk (\alpha : Type u) (A : \alpha \rightarrow pSet) : pSet
```

- Note that mk empty empty.elim always exists, and corresponds to the empty set at the bottom of the von Neumann hierarchy.
- (Extensional) equivalence can be defined by structural recursion (the elimination principle for the inductive type pSet is ∈-recursion): Two pre-sets are extensionally equivalent if every element of the first family is extensionally equivalent to some element of the second family and vice-versa.

The name construction done right

We add a third field to the constructor pSet.mk, so that all nodes of the tree are furthermore annotated with elements of \mathbb{B} ("Boolean truth-values")

00000000000000

```
inductive bSet (B : Type u)
   [complete_boolean_algebra B] : Type (u+1)
| mk (\alpha : Type u) (A : \alpha \rightarrow bSet) (B : \alpha \rightarrow \mathbb{B}) : bSet
```

- When B is the singleton algebra unit, bSet unit is isomorphic to pSet.
- There is a canonical map $x \mapsto \check{x}$ from pSet to bSet \mathbb{B} .
- bSet \mathbb{B} is exactly $V^{\mathbb{B}}$ (i.e. the name construction; bSet \mathbb{B} comprises the "B-names".)

Boolean-valued models of set theory

Introduction

In bSet B, (B-valued) equality is defined by structural recursion:

```
def bv_eq : \forall (x y : bSet \mathbb{B}), \mathbb{B} -- notation =^{B}
|\langle \alpha, A, A' \rangle \langle \beta, B, B' \rangle := \square \ a : \alpha, A' \ a \Longrightarrow || b : \beta, B' \ b \cap bv_eq
        (A a) (B b) \sqcap \square b : \beta, B' b \Longrightarrow \bigsqcup a : \alpha, A' a \sqcap bv_eq (A
       a) (B b)
```

```
\operatorname{\mathtt{def}} mem : bSet \mathbb{B} \to \operatorname{\mathtt{bSet}} \ \mathbb{B} \to \mathbb{B} --notation {}^{\backprime} \in {}^{B \backprime}
| a (mk \alpha' A' B') := | |a', B' a' \sqcap a = A' a'
```

and (B-valued) membership is defined from equality; together, these induce an assignment of truth-values (in \mathbb{B}) to all sentences in the language of ZFC.

Theorem. For every \mathbb{B} , bSet \mathbb{B} is a **Boolean-valued model** of ZFC.

Introduction

- The usual argument for the independence of CH goes like this:
 - Force ¬CH using the Cohen poset, producing a model where CH is false, so $\neg CH$ is consistent with ZFC, i.e. CH is unprovable from 7FC

- Gödel showed that CH is true in the constructible universe L, so CH is consistent with ZFC. i.e. \neg CH is unprovable from ZFC.
- In our formalization, we:
 - Force ¬CH using Boolean-valued models, i.e. by using a Boolean completion \mathbb{B}_{cohen} of the Cohen poset and verifying that $\neg CH$ has truth-value \top in bSet $\mathbb{B}_{\text{cohen}}$.
 - Instead of constructing L, we also force CH via collapse forcing. again with Boolean-valued models, i.e. by verifying that the truth value of CH is \top in bSet $\mathbb{B}_{\text{collapse}}$.

High-level overview

ullet To do forcing, we must analyze combinatorial properties of $\mathbb B$ or a densely-embedded poset \mathbb{P} presenting \mathbb{B} , and determine how these properties influence the set-theoretic behavior of bSet B.

Forcing

• This entails studying how the structure of \mathbb{B} induces relationships between e.g. Lean's cardinals/ordinals (equivalence classes of types) with the internal cardinals/ordinals of bSet B.

Requires some basic set theory (ordinals, ℵ₁, etc) internal to bSet B.

External approximations to new functions

- Particular choices of B affect how subsets are formed in bSet. B.
- For Cohen forcing, B_cohen is the algebra of regular open sets of the Cantor space $2^{\aleph_2 \times \omega}$.

- To each $\nu \in \aleph_2$, we can attach a new *Cohen real*, i.e. a new subset of ω given by the indicator function λn , $\{g: 2^{\aleph_2 \times \omega} \mid g(\nu, n) = 1\}$
- Induces an injection $\aleph_2 \hookrightarrow \mathcal{P}(\omega)$ in bSet $\mathbb{B}_{\underline{}}$ cohen.
- For collapse forcing, bSet B_collapse is the regular open algebra of the function space $\aleph_1 \to \mathcal{P}(\omega)$.
- To every $(\nu, S) \in \check{\aleph}_1 \times \mathcal{P}(\omega)$, we attach the principal open set of all functions $\aleph_1 \to \mathcal{P}(\omega)$ sending ν to S.
- This gives rise to an indicator function on $\aleph_1 \times \mathcal{P}(\omega)$, checked to be the graph of a surjection $\check{\aleph_1} \twoheadrightarrow \mathcal{P}(\omega)$ in bSet $\mathbb{B}_{\mathtt{collapse}}$.

Automation for boolean-valued logic

Old and busted:

```
example {B} [complete_boolean_algebra B] {a b c : B} :
  ( a \Longrightarrow b ) \sqcap ( b \Longrightarrow c ) \leqslant a \Longrightarrow c :=
begin
  rw [ \leftarrow deduction, inf_comm, \leftarrow inf_assoc ],
  transitivity b \sqcap (b \Longrightarrow c),
  { refine le_inf _ _,
      { apply inf_le_left_of_le, rw inf_comm, apply mp },
      { apply inf_le_right_of_le, refl }},
      { rw inf_comm, apply mp }
end
```

Automation for boolean-valued logic

New hotness:

```
example \{\mathbb{B}\} [complete_boolean_algebra \mathbb{B}] {a b c : \mathbb{B}} :
  (a \Longrightarrow b) \sqcap (b \Longrightarrow c) \leqslant a \Longrightarrow c :=
by { tidy_context, bv_tauto } -- B-valued tableaux prover
/- 'tidy_context' repeatedly applies the Yoneda lemma for posets
i.e. a \leq b \leftrightarrow \forall \Gamma, \Gamma \leq a \rightarrow \Gamma \leq b
tactic state before final step:
a b c \Gamma_1: \mathbb{B},
\Gamma_{-1} : \mathbb{B} := a \sqcap G
a_1=1 = \Gamma_1 \leq a \implies b,
a_1=right : \Gamma_1 \leq b \implies c
H : \Gamma 1 \leq a
⊢ Γ 1 ≤ c -/
```

Automation for boolean-valued logic

- This technique also exposes a family of setoids on bSet B induced by \mathbb{B} -valued equality: for every Γ , λx y, $\Gamma \leqslant x =^{\mathbb{B}} y$ is an equivalence relation.
- If the remainder of a proof is just equality reasoning (mod \mathbb{B}), we can just quotient by the setoid and run congruence closure.

```
example \{a \ b \ c \ d \ e : bSet \ \mathbb{B}\}:
                                                                     (a = B) \sqcap (b = B) \sqcap (c = B) \sqcap (d = B) \otimes (a =
by tidy_context; bv_cc
```

```
example \{x_1, y_1, x_2, y_2 : bSet \mathbb{B}\} \{\Gamma\}
    (H_1 : \Gamma \leqslant x_1 \in^B y_1) (H_2 : \Gamma \leqslant x_1 =^B x_2)
    (H_2 : \Gamma \leqslant y_1 = y_2) : \Gamma \leqslant x_2 \in y_2 := by bv_cc
```

Summary

- Was it as easy as I hoped? Eventually took 20,000 LOC and 1 year to complete, so maybe not.
- Our translation of the forcing argument into type theory shows that a ground model of set theory is not a prerequisite for forcing. Boolean-valued Aczel sets built out of a universe of types are enough.
- Challenges: many parts of textbook expositions did not have type-theoretic analogues, and the forcing argument for CH via Boolean-valued models is not well-documented.
- Formalization elucidated the proofs, and some parts were even discovered using Lean.
- Domain specific automation is useful; Lean makes it easy to write.

Summary

Introduction

Thank you!

- flypitch.github.io
- https://www.github.com/flypitch/flypitch