A formal proof of the independence of the
continuum hypothesis

Jesse Michael Han and Floris van Doorn
CPP 2020

University of Pittsburgh

Introduction Syntax Forcing Conclusions
0000 00000 00000000000000 00

Qutline

Introduction

Syntax

Forcing

Conclusions

Introduction Syntax Forcing Conclusions
@000 00000 0000000000000 0 [e]e]

Continuum hypothesis

e Posed by Cantor in 19th century: does there exist an infinite
cardinality strictly larger than the countable natural numbers N but
strictly smaller than the uncountable real numbers R?

e was Hilbert's 1st question

e Proved independent (neither provable nor disprovable) from ZFC by
Paul Cohen ('60s) and Kurt Godel ('30s). Cohen's invention of
forcing earned him a Fields medal, the only one ever awarded for
work in mathematical logic.

Introduction
000

Continuum hypothesis

e Independence of CH had never been formalized

Formalizing 100 Theorems

There used to exist a on the web, which
is a rather arbitrary list (and most of the theorems seem rather elementary),

but still is nice to look at. On the current page = will keep track of which
theorems from this list have been formalized. Currently the fraction that
already has been formalized seems to be

94%

24. The Undecidability of the Continuum Hypothesis

Introduction Syntax Forcing Conclusions
ooeo 00000 0000000000000 0 [e]e]

Continuum hypothesis

e Independence of CH had never been formalized. .. until now!

FLYPITCH

formally proving the independence of the continuum hypothesis

Website: flypitch.github.io

e Formalized the independence of CH
e Built reusable libraries for mathematical logic and set theory

e Written in Lean 3.

https://flypitch.github.io

Introduction Syntax Forcing Conclusions
[eJele]) 00000 0000000000000 0 [e]e]

What is required for the formalization?

To formalize just the statement, "the continuum hypothesis is neither
provable nor disprovable from ZFC", we need:

e Syntax: first-order logic (terms, formulas, quantifiers, sentences. . .)
e provability, i.e. a proof system
e the axioms of ZFC and also CH as first-order formulas
To formalize the proof, we need:
e Semantics (ordinary soundness theorem)
e Boolean-valued semantics and soundness for first-order logic
e Boolean-valued models of ZFC

e Forcing

Introduction Syntax

Forcing
0000 0000

Conclusions
0000000000000 0 [e]e]

First-order logic

structure Language : Type (utl) :=
(functions : N — Type u)
(relations : N — Type u)

/- The language of abelian groups -/
inductive abel_functions : N — Type
| zero : abel_functions 0O

| plus : abel_functions 2

def L_abel : Language := (abel_functions, (A _, empty))

Introduction Syntax Forcing Conclusions
0000 0@000 00000000000000 00

First-order logic

inductive preterm : N — Type u

| var : V (k : N), preterm O -- notation &

| func : V {1 : N} (£ : L.functions 1), preterm 1

| app : V {1 : N} (¢t : preterm (1 + 1)) (s : preterm 0),
preterm 1

def term := preterm L O

e preterm L n is a partially applied term. If applied to n terms, it
becomes a term.

e Every element of preterm L 0 is a well-formed term.

e We use this encoding to avoid mutual or nested inductive types,
since those are not too convenient to work with in Lean.

Introduction Syntax

Forcing Conclusions
0000 [e]e] lele] 0000000000000 0 [e]e]
First-order logic

Similarly for formulas:

inductive preformula : N — Type u

| falsum {} : preformula 0 -- notation L

equal (ti1 t» : term L) : preformula O -- notation ~

|

| rel {1 : N} (R : L.relations 1) : preformula 1

| apprel {1 : N} (f : preformula (1 + 1)) (t : term L)
preformula 1

| imp (f1 f» : preformula 0) : preformula O -- notation —

| all (f : preformula 0) : preformula O -- notation V'

def formula := preformula L O

Introduction Syntax Forcing Conclusions
0000 000@0 00000000000000 00

First-order logic

To test our implementation, we formalized the completeness and
compactness theorems.

theorem completeness {L : Language} (T : Theory L) (¢ :
sentence L) : T+ ¢ <« T = 9

theorem compactness {L : Language} {T : Theory L} {f : sentence
L} :
TE f < J fs : finset (sentence L), ({fs : Theory L) E (f
sentence L) A 1fs € T

Introduction Syntax Forcing Conclusions

0000 [e]ele]e]) 0000000000000 0 [e]e]

VA ®

We conservatively extend ZFC with additional constant/function symbols:

* J

ordered pairing function (—, —)

)

natural numbers w

e powerset operation P(—)

e union operation | J(—)

We formulate CH as follows:

Vx, (x is an ordinal) — x < w v P(w) < x

where x < y means there exists a surjection from a subset of y onto x

10

Introduction Syntax Forcing Conclusions
0000 00000 0000000000000 0 [e]e]

Generic extensions vs Boolean-valued models

Forcing goes something like this: given either a poset (of "forcing
conditions") P or a Boolean completion B of P, and a transitive ground
model M of ZFC, one:

e Constructs a class of "names" (P-names or B-names)

e In the case of forcing with generic extensions, one selects a "generic
filter" G < IP and uses it to "evaluate" the P-names, producing the
forcing extension M|[G] which is checked to be a model of ZFC with
the desired properties.

o In the case of Boolean-valued models, one works with the B-names
directly, as a B-valued model M® of ZFC. This becomes the forcing
extension.

11

Introduction Syntax Forcing Conclusions
0000 00000 0800000000000 0 [e]e]

Generic extensions vs Boolean-valued models

Major problem for a Lean user: everything is defined set-theoretically, and
the set theory seems inextricable from the definition.

1 page into Kunen's chapter on forcing:

Definition 14.1. A set FF C P is a filter on P if

(14.1) (i) F is nonempty;
(ii) if p < g and p € F, then g € F;
(iii) if p,q € F, then there exists r € F such that » < p and r < ¢.

A set of conditions G C P is generic over M if

(14.2) (i) G is a filter on P;
(1) if Disdensein P and D € M, then GND # ().

We also say that G is M-generic, or P-generic (over M), or just generic.

12

Introduction Syntax Forcing Conclusions
0000 00000 0O@00000000000 00

The name construction

Similarly for the set-theoretic definition of P-names (Kunen):

2.5. DEFINITION. 7 is a IP-name iff t is a relation and

Y{o,p>et[oisalP-name A pelP]. O

This definition does not mention models or any order on IP. The collection
of IP-names will be a proper class if [P # 0.

Definition 2.5 must be understood as a definition by transfinite recursion.
Formally, one defines the characteristic function of the IP-names, H(IP, 1),
by

H(IP,7) = 1 iff zisarelation A V{a,p)>et[H(P,0) =1 A pelP].
H(P, 1) = 0 otherwise.

13

Introduction Syntax Forcing Conclusions
0000 00000 0008000000000 0 [e]e]

Generic extensions vs Boolean-valued models

At first glance, the situation is not much better for Boolean-valued
models.

We now suppose given a complete Boolean algebra B, which we will assume
to be fixed throughout the rest of this chapter. We also assume that B is a set,
that is, B e V.

We define the universe V(5] of B-valued sets by analogy with (1.2); namely,
we define, by recursion on «,

VB = {2 Fun(z) A ran(z) C B A 3¢ < a|dom(z) C VE[B)]} (14)
and

VB = {z:3alz € V;ﬁB)]}. (1.5)

14

Introduction Syntax Forcing Conclusions
0000 00000 0000800000000 0 [e]e]

Generic extensions vs Boolean-valued models

e Naiive approach: fix a model of ZFC in Lean, then replicate forcing
arguments verbatim, inside the model. (Yikes).

e During formalization, do forcing arguments have to be carried out
internally to a model of set theory?

e Answer: No!

e Use Boolean-valued approach to avoid generic filters.

e Key observation: the definition of V2 (equivalently, the name
construction) is naturally implemented as an inductive type
generalizing the Aczel construction of a model of ZFC from a
universe of types.

15

Introduction Syntax Forcing Conclusions
0000 00000 00000800000000 00

A model of ZFC in Lean

The following construction is due to Aczel:

inductive pSet : Type (u+l)
| mk (o : Type u) (A : a — pSet) : pSet

e Note that mk empty empty.elim always exists, and corresponds to
the empty set at the bottom of the von Neumann hierarchy.

e (Extensional) equivalence can be defined by structural recursion (the
elimination principle for the inductive type pSet is €-recursion): Two
pre-sets are extensionally equivalent if every element of the first
family is extensionally equivalent to some element of the second

family and vice-versa.

16

Introduction Syntax Forcing

0000

00000 0000008000000 0 [e]e]

The name construction done right

We add a third field to the constructor pSet.mk, so that all nodes of the
tree are furthermore annotated with elements of B ("Boolean
truth-values")

inductive bSet (B : Type u)
[complete_boolean_algebra B] : Type (ut+1l)
| mk (o : Type w) (A : a — bSet) (B : @« — B) : bSet

e When B is the singleton algebra unit, bSet unit is isomorphic to
pSet.

e There is a canonical map x — X from pSet to bSet B.

e bSet B is exactly VB (i.e. the name construction; bSet B comprises
the "B-names".)

Conclusions

17

Introduction Syntax Forcing Conclusions

0000 00000 0000000000000 [e]e]

Boolean-valued models of set theory

In bSet B, (B-valued) equality is defined by structural recursion:

\ _B\

def bv_eq : V (x y : bSet B), B -- notation =

| {a,A,A") (3,B,B") :=[]a:a, a= ||b: 3, B bnr bv_eq
(Aa) B m []b: B, B b=]]a:a, ' anbv_eq (4
a) (B b)

def mem : bSet B — bSet B — B --notation ‘€’
| a (mk o A" B) :=|]a', BB a ma="4A2a

and (B-valued) membership is defined from equality; together, these
induce an assignment of truth-values (in B) to all sentences in the

language of ZFC.

Theorem. For every B, bSet B is a Boolean-valued model of ZFC.

18

Introduction Syntax Forcing Conclusions
0000 00000 00000000800000 00

High-level overview

e The usual argument for the independence of CH goes like this:
e Force —CH using the Cohen poset, producing a model where CH is
false, so —=CH is consistent with ZFC, i.e. CH is unprovable from
ZFC.
e Godel showed that CH is true in the constructible universe L, so CH
is consistent with ZFC, i.e. —CH is unprovable from ZFC.

e In our formalization, we:

e Force —CH using Boolean-valued models, i.e. by using a Boolean
completion Beohen of the Cohen poset and verifying that —CH has
truth-value T in bSet B_cohen.

e Instead of constructing L, we also force CH via collapse forcing,
again with Boolean-valued models, i.e. by verifying that the truth
value of CH is T in bSet B_collapse.

19

Introduction Syntax Forcing Conclusions

0000 00000 000000000800 00 [e]e]

High-level overview

e To do forcing, we must analyze combinatorial properties of B or a
densely-embedded poset P presenting B, and determine how these
properties influence the set-theoretic behavior of bSet B.

e This entails studying how the structure of B induces relationships
between e.g. Lean’s cardinals/ordinals (equivalence classes of types)
with the internal cardinals/ordinals of bset B.

pSet — X=X, pSet B

ordinal.mk

ordinal.{u}

e Requires some basic set theory (ordinals, Ny, etc) internal to bSet B.

20

Introduction Syntax Forcing Conclusions
0000 00000 000000000080 00 [e]e]

External approximations to new functions

e Particular choices of B affect how subsets are formed in bSet B.

e For Cohen forcing, B_cohen is the algebra of regular open sets of the
Cantor space 282*%

e To each v € Ny, we can attach a new Cohen real, i.e. a new subset
of w given by the indicator function An, {g : 2%2*% | g(v, n) = 1}

e Induces an injection Ny <> P(w) in bSet B_cohen.

e For collapse forcing, bSet B_collapse is the regular open algebra of
the function space 81 — P(w).

e To every (1, S) € N; x P(w), we attach the principal open set of all
functions 8; — P(w) sending v to S.

e This gives rise to an indicator function on N; x P(w), checked to be
the graph of a surjection ¥; — P(w) in bSet B_collapse.

21

Introduction Syntax Forcing Conclusions
0000 00000 0000000000000 00

Automation for boolean-valued logic

Old and busted:

example {B} [complete_boolean_algebra B] {a b c : B} :
(a=b)n(b=c) <a= c :=
begin
rw [<« deduction, inf_comm, < inf_assoc],
transitivity b m (b = c¢),
{ refine le_inf _ _,
{ apply inf_le_left_of_le, rw inf_comm, apply mp I},
{ apply inf_le_right_of_le, refl 1}},
{ rw inf_comm, apply mp }

end

22

Introduction Syntax Forcing Conclusions
0000 00000 000000000000 e0 [e]e]

Automation for boolean-valued logic

New hotness:

example {B} [complete_boolean_algebra B] {a b ¢ : B} :
(a=—=Db)mn(b=c) <a=— c:=
by { tidy_context, bv_tauto } -- B-walued tableauz prover

/- ‘tidy_context\ repeatedly applies the Yoneda lemma for posets
iie.a<beoe VI, I<a-—->TIT<hb

tactic state before final step:
abcl_1: B,

lr’1 : B :=an G,

a_l_left : .1 < a =— b,
a_l_right : _.1 < b = c,
H:T.1<a

FTr1<c-/

23

Introduction Syntax Forcing Conclusions
0000 00000 0000000000000e 00

Automation for boolean-valued logic

e This technique also exposes a family of setoids on bSet B induced
by B-valued equality: for every I, Ax y,I < x =P y is an
equivalence relation.

e If the remainder of a proof is just equality reasoning (mod B), we
can just quotient by the setoid and run congruence closure.

example {a b ¢ d e : bSet B} :
@=b) 1 =) (c=d n@=Pe) <a=Pe:=

by tidy_context; bv_cc

example {x; y1 x2 y2 : bSet B} {I'}
(H :FT<x ¥ y) (B : T <x1 =% x)
(H, : T

/

N

y1 =B y2) : [< % eB y2 := by bv_cc

24

Introduction Syntax Forcing Conclusions
0000 00000 0000000000000 0 [Je}

Summary

e Was it as easy as | hoped? Eventually took 20,000 LOC and 1 year
to complete, so maybe not.

e Our translation of the forcing argument into type theory shows that
a ground model of set theory is not a prerequisite for forcing.
Boolean-valued Aczel sets built out of a universe of types are
enough.

e Challenges: many parts of textbook expositions did not have
type-theoretic analogues, and the forcing argument for CH via
Boolean-valued models is not well-documented.

e Formalization elucidated the proofs, and some parts were even
discovered using Lean.

e Domain specific automation is useful; Lean makes it easy to write.

25

Introduction Syntax Forcing Conclusions
0000 00000 0000000000000 oce

Summary

Thank you!

e flypitch.github.io
e https://www.github.com/flypitch/flypitch

26

flypitch.github.io
https://www.github.com/flypitch/flypitch

	Introduction
	Syntax
	Forcing
	Conclusions

