
A formalization of forcing and the
unprovability of the continuum hypothesis

Jesse Michael Han

ITP 2019

University of Pittsburgh

joint w/ Floris van Doorn

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Outline

Introduction

Syntax

Boolean-valued models of ZFC

Forcing

Some neat tricks

Conclusions

1

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Continuum hypothesis

• Posed by Cantor in 19th century: does there exist an infinite
cardinality strictly larger than the countable natural numbers N but
strictly smaller than the uncountable real numbers R?

• was Hilbert’s 1st question

• Proved independent (neither provable nor disprovable) from ZFC by
Paul Cohen (’60s) and Kurt Godel (’30s). Cohen’s invention of
forcing earned him a Fields medal, the only one ever awarded for
work in mathematical logic.

3

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Continuum hypothesis

• Independence of CH has never been formalized!

4

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

The Flypitch project

Website: flypitch.github.io

• Aims to formalize the independence of CH

• Along the way, build reusable libraries for mathematical logic and set
theory

• Written in Lean 3.

5

https://flypitch.github.io

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

What is required for the formalization?

To formalize just the statement, "the continuum hypothesis is neither
provable nor disprovable from ZFC", we need:

• First-order logic (terms, formulas, quantifiers, sentences. . .)

• Provability, i.e. a proof system

• The axioms of ZFC and also CH as first-order formulas

To formalize the proof, we need:

• Semantics (ordinary soundness theorem)

• Completeness theorem

• Boolean-valued semantics and soundness for first-order logic

• Forcing

6

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

First-order logic

structure Language : Type (u+1) :=
(functions : N Ñ Type u)
(relations : N Ñ Type u)

/- The language of abelian groups -/
inductive abel_functions : N Ñ Type
| zero : abel_functions 0
| plus : abel_functions 2

def L_abel : Language := xabel_functions, (λ _, empty)y

8

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

First-order logic

inductive preterm : N Ñ Type u
| var : @ (k : N), preterm 0 -- notation &
| func : @ {l : N} (f : L.functions l), preterm l
| app : @ {l : N} (t : preterm (l + 1)) (s : preterm 0),

preterm l

def term := preterm L 0

• preterm L n is a partially applied term. If applied to n terms, it
becomes a term.

• Every element of preterm L 0 is a well-formed term.

• We use this encoding to avoid mutual or nested inductive types,
since those are not too convenient to work with in Lean.

9

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

First-order logic

Similarly for formulas:

inductive preformula : N Ñ Type u
| falsum {} : preformula 0 -- notation K
| equal (t1 t2 : term L) : preformula 0 -- notation »
| rel {l : N} (R : L.relations l) : preformula l
| apprel {l : N} (f : preformula (l + 1)) (t : term L) :

preformula l
| imp (f1 f2 : preformula 0) : preformula 0 -- notation ùñ
| all (f : preformula 0) : preformula 0 -- notation @1

def formula := preformula L 0

10

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

A model of ZFC in Lean

The following construction is due to Aczel, and was implemented in Coq
by Werner and then in Lean by Carneiro:

inductive pSet : Type (u+1)
| mk (α : Type u) (A : α Ñ pSet) : pSet

• Note that mk empty empty.elim always exists, and corresponds to
the empty set at the bottom of the von Neumann hierarchy.

• (Extensional) equality can be defined by structural recursion (the
elimination principle for the inductive type pSet is P-recursion): Two
pre-sets are extensionally equivalent if every element of the first
family is extensionally equivalent to some element of the second
family and vice-versa.

12

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

A model of ZFC in Lean

def equiv : @ (x y : pSet), Prop
| xα,Ay xβ,By := (@a : α, Db : β, equiv (A a) (B b)) ^ (@b : β

, Da : α, equiv (A a) (B b))

• Notice that an equivalent model of ZFC is produced by defining:

inductive bSet : Type (u+1)
| mk (α : Type u) (A : α Ñ bSet) (A1 : α Ñ bool) : bSet

• At first, this seems needlessly complicated (we can recover the
original pSet by recursively ignoring anything which is assigned
ff : bool).

13

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

A model of ZFC in Lean

• However, if we remember that bool is a complete boolean algebra
pbool,J,K, ,\,[,

Ů

,
Ű

,ñq, we see that by replacing
universal/existential quantification in Prop with infima/suprema in
bool, we can "internalize" the truth-values of equiv2 to bool:

def equiv1 : @ (x y : bSet), Prop
| xα,A,A1

y xβ,B,B1
y := (@ a : α, A1 a = tt Ñ D b : β, B1 b = tt ^

equiv1 (A a) (B b)) ^ (@b : β, B1 b = tt Ñ D a : α, A1 a =
tt ^ equiv1 (A a) (B b))

/- Assuming Prop » bool, equiv2 is equivalent to equiv1-/
def equiv2 : @ (x y : bSet), bool
| xα,A,A1

y xβ,B,B1
y :=

Ű

a : α, A1 a ùñ
Ů

b : β, B1 b [equiv2

(A a) (B b) [
Ű

b : β, B1 b ùñ
Ů

a : α, A1 a [equiv2

(A a) (B b)

14

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

The forcing extension

The definition of equiv2 makes sense for any complete boolean algebra.

Accordingly, we define

inductive bSet (B : Type u) [complete_boolean_algebra B] : Type
(u+1)

| mk (α : Type u) (A : α Ñ bSet) (B : α Ñ B) : bSet

Note:

• When B is the singleton algebra unit, bSet unit is isomorphic to
pSet.

• bSet B is exactly the "name construction" from forcing; bSet B
comprises the "B-names".

Theorem. For every B, bSet B is a boolean-valued model of ZFC.

15

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Boolean-valued semantics

• In general, can define B-valued semantics for arbitrary first-order
theories and prove a soundness theorem (if φ has truth-value b P B
in some B-valued model M and φ $ ψ, then ψ has truth-value
greater than or equal to b).

• Equality is interpreted as binary B-valued function p“Bq.

• An n-ary relation symbol is interpreted as an n-ary B-valued function
satisfying a B-valued congruence lemma with respect to equality
(e.g. x “B y [Rpxq ď Rpyq).

16

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Boolean-valued semantics

• Helpful special case: B “ (measure algebra of a probability space
modulo measure-zero events).

• It is profitable to keep in mind the following analogy, developed by
Scott. Let M be a B-valued structure.

• A unary B-valued predicate φ on M assigns an event to every
element m of M, whose measure we can think of as being the
probability that φpmq is true.

• Specializing to the language of set theory, in a B-valued model of set

theory, set membership pX
?
P Y q is no longer bool-valued, but

B-valued. Subsets of Z are determined by indicator functions
χ : Z Ñ B.

17

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Boolean-valued semantics

• To every B-valued set pm : Mq, we can attach an “indicator
function” λx , x P m which assigns to every x a probability that it is
actually a member of m.

• Thus, by virtue of extensionality, we may think of the elements of a
B-valued model of ZFC as being “set-valued random variables”, or
“random sets”.

• (In this analogy, given a universe of random sets, the purpose of the
generic filter or ultrafilter in forcing is then to simultaneously
evaluate the outcomes of the random variables, collapsing them into
an ordinary universe of sets.)

18

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Unprovability of CH

• How do we represent CH as a formula in ZFC?
• Let x ă y mean "there is no surjection from x onto y"
• Let x ĺ y mean "there is an injection from x into y"
• Then

CH :“ pDxDy , pω ă xq ^ px ă yq ^ py ĺ Ppωqqq .

• To show ZFC & CH, suffices (by applying the B-valued soundness
theorem) to exhibit a B-valued model of ZFC such that CH has
truth value ‰ J.

• So, it remains to find some complete boolean algebra B such that
CH is not true in bSet B.

19

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Forcing

• Traditionally, forcing is thought of as a technique for extending a
ground model of ZFC to a forcing extension (another model of ZFC),
where certain properties can be "forced" to be true or false, and the
complete boolean algebra B usually lives in the ground model.

• Our situation is different. pSet can be thought of as a "standard
model" of ZFC in Lean, but it is built from a type universe Type u,
and generally the parameter B (in bSet B) will be a type in Type u.

• The "ground model" (pSet) still embeds into the forcing extension:
for any B, there is a canonical map ("check-names") from pSet to
bSet B:

-- notation (x ÞÑ x̌)
def check : (pSet : Type (u+1)) Ñ bSet B
| xα,Ay := xα, λ a, check (A a), λ a, Jy

21

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Forcing

• To perform forcing, we need to understand how the metatheory
(Lean) interacts with the internal logic of the forcing extension
(bSet B).

• These interactions are mediated by check : pSet Ñ bSet B.

• The ordinals attached to Type u are equivalence classes of
well-ordered types in Type u, thus ordinal.(u) : Type (u+1).

• The internal logic of pSet is closely tied to that of Lean: the class of
set-theoretic ordinals in pSet is isomorphic to ordinal.(u).

• In turn, check sends pSet ordinals into the bSet ordinals.

• Note: ω in bSet is equal to ω̌

22

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Forcing

The isomorphism between Lean ordinals and pSet ordinals is given by
indexing the construction of von Neumann ordinals in one direction, and
sending a set to its ordinal rank in the other:

-- pseudocode
def pSet.ordinal.mk : ordinal Ñ pSet
| 0 := ∅
| succ ξ := pSet.succ (ordinal.mk ξ) -- (mk ξ Y {mk ξ})
| is_limit ξ :=

Ť

η < ξ, (ordinal.mk η)

def rank : pSet Ñ ordinal
| xα, Ay := ordinal.sup (λ a : α, (rank (A a)).succ)

23

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Forcing

24

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Forcing

• We want to pick some B such that

 CH :“ DxDy , pω ă xq ^ px ă yq ^ py ĺ Ppωqq

is true.

• The idea is that we pick x to be ℵ̌1 and y to be ℵ̌2.

We need to ensure two things:

1. that there are no surjections from ω onto ℵ̌1 or ℵ̌1 onto ℵ̌2, and

2. that there is an injection from ℵ̌2 into Ppωq.

25

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Converting internal @D statements to external @D statements

Let (x,y : pSet) such that x ă y and suppose that bSet B thinks
there is a surjection f from x̌ onto y̌ . That is, in B, we have that

J ď (is_func f) [(
Ű

z P y,
Ů

w P x, f w̌ =B ž)

Then the key observation is that this @D-statement in bSet B can be
turned in to a @D-statement in the metatheory:

@ (j : y.type), D (i : x.type), K < (is_func f) [f (x.func i)̌
=B (y.func j)̌

A mild combinatorial condition on B ensuring that all antichains are
countable (CCC) rules out the above statement from being true when
y.type is uncountable (because then, any function induced by the @D
statement above has an uncountable fiber indexing an antichain).

26

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Cohen forcing

• A subset of a topological space X is regular open if it is the interior
of its closure.

• The regular opens ROpX q form a complete boolean algebra.

• The boolean algebra we use to force CH is:

B_cohen := ROp2ℵ2ˆωq

• X has a basis of clopens, generated by a subbasis of "principal
opens" parametrized by ℵ2 ˆ ω of the form

principal_open (ν, n) := { g : ℵ2 ˆ ω Ñ 2 | g (ν, n) = 0}

27

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Cohen forcing

• Recall that for every B, the powerset of ω in bSet B is determined
by indicator functions χ : ω Ñ B. So, by virtue of our choice of
B := B_cohen, for every ν ă ℵ2, we can attach the following
indicator function:

def cohen_real.mk : ℵ2 Ñ (N Ñ B_cohen) :=
λ ν : ℵ2, (λ n : N, principal_open (ν,n))

• cohen_real.mk ν is the Cohen real attached to ν, and it’s
straightforward to check that this induces an injection ℵ2 ãÑ Ppωq
in bSet B (so we have "added ℵ2-many Cohen reals")

• Furthermore, one checks that B has the CCC, completing the forcing
argument.

28

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

The final result

theorem CH_unprovable_from_ZFC : (ZFC1
$

1 CH_sentence) :=
begin

intro H,
suffices forces_false : J ,[V B] bd_falsum,

from absurd (nontrivial.bot_lt_top) (not_lt_of_le
forces_false),

refine forced_absurd _ _, exact ZFC1, exact CH_f, swap, apply
neg_CH_f,

let prf_of_CH_f := sprovable_of_provable (classical.choice H),
have CH_f_true := boolean_soundness prf_of_CH_f

(V_B_nonempty),
convert CH_f_true, rw[inf_axioms_top_of_models

(bSet_models_ZFC1 _)]
end

29

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

But wait, there’s more

That was all done before April. Over the summer, we’ve added quite a
bit more to the codebase. . .

30

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

But wait, there’s more

• There’s also a forcing argument for CH!

• It actually relies on more set theory (e.g. construction of ℵ1, not
just ℵ̌1) than the Cohen forcing argument for CH.

• Except for the (very) standard fact that ZFC proves the existence of
a successor cardinal to ω, we have. . .

31

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Forcing CH

• Whereas Cohen forcing creates a new injection ℵ2 ãÑ Ppωq, we can
use collapse forcing to create a new surjection ℵ1 � Ppωq.

• Let P_collapse be the poset of countable partial functions
ℵ1 Ñ Ppωq. The "principal open" sets

Dp :“ tg : ℵ1 Ñ Ppωq | g extends pu, p P Pcollapse

form the basis of a topology τ on the function set Ppωqℵ1 . Put
B_collapse := RO

`

Ppωqℵ1 , τ
˘

.

32

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Forcing CH

• To specify the surjection ℵ1 � Ppωq, need to specify a subset of the
powerset Ppℵ1 ˆ Ppωqq.

• Let ppν, Sq be the (singleton) countable partial function which sends
ν : ℵ1 to S : Ppωq.

• Then we can check that the indicator function

pν, Sq ÞÑ Dppν,Sq,

induces a surjection in bSet B_collapse from ℵ̌1 to ˇPpωq.

• Then it remains to check that ℵ̌1 “ ℵ1 and Ppωq “ ˇPpωq

33

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Forcing CH

• This follows from the following property: for any y : pSet, and for
any f : bSet B_collapse, if bSet B_collapse thinks that
f : ω̌ Ñ y̌ is a function, then there exists a g : ω Ñ y in pSet such
that ǧ “ f̌ .

As before, reflect a boolean-valued @D statement into the metatheory.
The following lemma is always true:

lemma AE_of_check_func_check (x y : pSet.{u}) {f : bSet B} {Γ : B}
(H : Γ ď is_func1 (x̌) (y̌) f) (H_nonzero : K < Γ) :
˝ (i : x.type),
D (j : y.type) (Γ1 : B) (H_nonzero1 : K < Γ1) (H_le : Γ1 ď Γ),

Γ1 ď (is_func1 (x̌) (y̌) f) ^ Γ1 ď (pair ((x.func i)̌) ((y.func j)̌
)) PB f :=

34

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Forcing CH

Recursively applying this lemma, obtain values g0, . . . , gn, . . . such that

K ă ¨ ¨ ¨ ă

˜

ę

kďn

ppk , gkq P
B gq

¸

ă ¨ ¨ ¨ ă pp0, g0q P
B gq

The intersection of this chain thinks that g is the required lift of f . In
general, this intersection might be empty, but it is nonempty for
B_collapse, (essentially) because the union of a chain of countable
partial functions is again a countable partial function. By a denseness
argument, g has the required property.

Putting it all together, we have. . .

35

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

The final result

theorem CH_unprovable_from_ZFC : (ZFC1 $1 CH_sentence) :=
unprovable_of_model_neg (V B_cohen) fundamental_theorem_of_forcing

(nontrivial.bot_lt_top) V_B_cohen_models_neg_CH

theorem neg_CH_unprovable_from_ZFC : (ZFC1 $1 „CH_sentence) :=
unprovable_of_model_neg (V B_collapse) fundamental_theorem_of_forcing

(nontrivial.bot_lt_top) (by {rw forced_in_not, from
V_B_collapse_models_CH})

def independent {L : Language} (T : Theory L) (f : sentence L) : Prop :=
 (T $1 f _ T $1 „f)

theorem independence_of_CH : independent ZFC1 CH_sentence :=
begin

have := CH_unprovable_from_ZFC,
have := neg_CH_unprovable_from_ZFC,
finish

end

36

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Automation for boolean-valued logic

• The calculus of the forcing relation (in the poset P of forcing
conditions) can be thought of as a shorthand for the calculation of
inequalities of boolean truth-values after embedding P into a
boolean completion, i.e. p , q ðñ pp ď pq

• e.g., given a predicate φpxq, the sentence @x , φpxq is "true" if we
have that J ď

ę

x

φpxq. Think of ď as a turnstile ($).

• Calculations are hard if you manipulate these expressions as infinite
sums and products.

• Calculations are easy if you think of these as formulas and replay the
proofs from first-order logic.

38

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Automation for boolean-valued logic

• In Lean, proving p1, ., pk , .., pn $ pk is trivial (by assumption).

• Calculating a1 [¨ ¨ ¨ [ak [¨ ¨ ¨ [an ď ak in B is also trivial, but
harder to write a tactic that proves this uniformly in k and n.

• Solution: use the tactic framework to automate calculations in B.

• Yoneda lemma: a ď b ðñ @Γ, Γ ď aÑ Γ ď b.

• Applying this turns the previous problem into
pΓ : Bq, Γ ď a1, . . . , Γ ď ak , . . . , Γ ď an $ Γ ď ak , which is now
trivial (by assumption). Easy to automate.

• With more custom tactics/trickery (e.g. boolean-valued natural
deduction tactics, coercing material implications and

Ű

s to
Pi-types) we can pretend we’re just writing FOL proofs.

39

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Automation for boolean-valued logic

Old and busted:

example { B } [complete_boolean_algebra B] {a b c : B} :
(a ùñ b) [(b ùñ c) ď a ùñ c :=

begin
rw[<-deduction], unfold imp, rw[inf_sup_right, inf_sup_right],
simp only [inf_assoc, sup_assoc], refine sup_le _ _,
ac_change1 (-a [a) [(-b \ c) ď c,
from inf_le_left_of_le (by simp), rw[inf_sup_right],
let x := _, let y := _, change b [(x \ y) ď _,
rw[inf_sup_left], apply sup_le,
{ simp[x, inf_assoc.symm] },
{ from inf_le_right_of_le (by simp) }

end

40

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Automation for boolean-valued logic

New hotness:

example { B } [complete_boolean_algebra B] {a b c : B} :
(a ùñ b) [(b ùñ c) ď a ùñ c :=

by {tidy_context, bv_imp_intro, from a_1_right (a_1_left H)}

-- tactic state before final step:
-- a b c G : B,
-- G_1 : B := a [G,
-- a_1_left : G_1 ď a ùñ b,
-- a_1_right : G_1 ď b ùñ c,
-- H : G_1 ď a
-- $ G_1 ď c

41

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Automation for boolean-valued logic

• This technique also exposes a family of setoids on bSet B induced
by B-valued equality: for every Γ, λx y , Γ ď x “B y is an
equivalence relation.

• If the remainder of a proof is just equality reasoning (mod B), we
can just quotient by the setoid and run congruence closure.

example {a b c d e : bSet B} :
(a =B b) [(b =B c) [(c =B d) [(d =B e) ď a =B e :=

by tidy_context; bv_cc

42

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Proof transfer via completeness and boolean-valued sound-
ness

• The B-valued soundness theorem says that for any first-order
sentence ϕ, any proof tree

ZFC $ ϕ

can be replayed in any B-valued model.

• The completeness theorem says that if ϕ can be proven in every
(ordinary, i.e. bool-valued) model of ZFC, then there is a proof tree
ZFC $ ϕ.

• While custom automation makes B-valued proofs easier, we could
also prove things like "Zorn’s lemma is equivalent to AC" by working
in an arbitrary ordinary model of ZFC, then transfer the proof to all
B-valued models of ZFC.

43

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Formula pretty-printing

• Our FOL formulas use de Bruijn indices, which are not so fun to
read.

• Solution: write a print_formula program in Lean to pretty-print
them using named variables!

Example:

def axiom_of_regularity : sentence L_ZFC1 :=
@1 („(&0 » ∅1) ùñ (D1 (&10 P1 &11 [@1 (&10 P1 &12 ùñ „(&10 P1

&11)))))

#eval print_formula axiom_of_regularity
-- (@x1,((x1 = ∅) _ Dx2,(x2 P x1^(@x3,(x3 P x1 ùñ x3 P x2)))))

44

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Formula parsing

• Lean also uses de Bruijn indices to represent variables, but parses
them from a named representation entered by the user.

• So, use metaprogramming to hijack Lean’s parser and pattern-match
on the parsed expr to produce a deeply-embedded FOL formula!

Example:

def my_formula : formula L :=
by parse_formula (@ x y : α, (x = y))

#print my_formula
-- @1@1(&1 » &0)

• (maybe) roll our own formula parser with a monadic parser
combinator library

45

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Summary

• Started in October 2018, now at 20,000 lines of code

• Our translation of the forcing argument into type theory shows that
a ground model of set theory is not really needed to do forcing.

• Challenges: many parts of textbook expositions did not have
type-theoretic analogues, and the forcing argument for CH via
Boolean-valued models is not well-documented.

• Transfinite induction almost never needed once we have bSet B and
its recursion principle.

• Domain specific automation is useful; Lean makes it easy to write.

47

Introduction Syntax Boolean-valued models of ZFC Forcing Some neat tricks Conclusions

Summary

Thank you!

• flypitch.github.io

• https://www.github.com/flypitch/flypitch

48

flypitch.github.io
https://www.github.com/flypitch/flypitch

	Introduction
	

	Syntax
	

	Boolean-valued models of ZFC
	

	Forcing
	

	Some neat tricks
	

	Conclusions
	

